首页> 外文期刊>Mobile Computing, IEEE Transactions on >Joint Physical-Layer and System-Level Power Management for Delay-Sensitive Wireless Communications
【24h】

Joint Physical-Layer and System-Level Power Management for Delay-Sensitive Wireless Communications

机译:延迟敏感的无线通信的联合物理层和系统级电源管理

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of energy-efficient point-to-point transmission of delay-sensitive data (e.g., multimedia data) over a fading channel. Existing research on this topic utilizes either physical-layer centric solutions, namely power-control and adaptive modulation and coding (AMC), or system-level solutions based on dynamic power management (DPM); however, there is currently no rigorous and unified framework for simultaneously utilizing both physical-layer centric and system-level techniques to achieve the minimum possible energy consumption, under delay constraints, in the presence of stochastic and a priori unknown traffic and channel conditions. In this paper, we propose such a framework. We formulate the stochastic optimization problem as a Markov decision process (MDP) and solve it online using reinforcement learning (RL). The advantages of the proposed online method are that 1) it does not require a priori knowledge of the traffic arrival and channel statistics to determine the jointly optimal power-control, AMC, and DPM policies; 2) it exploits partial information about the system so that less information needs to be learned than when using conventional reinforcement learning algorithms; and 3) it obviates the need for action exploration, which severely limits the adaptation speed and runtime performance of conventional reinforcement learning algorithms. Our results show that the proposed learning algorithms can converge up to two orders of magnitude faster than a state-of-the-art learning algorithm for physical layer power-control and up to three orders of magnitude faster than conventional reinforcement learning algorithms.
机译:我们考虑了在衰落信道上对延迟敏感的数据(例如,多媒体数据)进行节能的点对点传输的问题。关于该主题的现有研究利用了以物理层为中心的解决方案,即功率控制和自适应调制与编码(AMC),或基于动态功率管理(DPM)的系统级解决方案。但是,目前没有严格而统一的框架,可以在存在随机和先验未知流量和信道条件的情况下,在延迟约束下,同时利用物理层中心和系统级技术来实现最低的能耗。在本文中,我们提出了这样一个框架。我们将随机优化问题表述为马尔可夫决策过程(MDP),并使用强化学习(RL)在线解决该问题。所提出的在线方法的优点在于:1)它不需要对流量到达和信道统计信息的先验知识即可确定联合最优功率控制,AMC和DPM策略; 2)它利用有关系统的部分信息,因此与使用传统的强化学习算法相比,需要学习的信息更少; 3)消除了对动作探索的需求,这严重限制了传统强化学习算法的适应速度和运行时性能。我们的结果表明,与用于物理层功率控制的最新学习算法相比,所提出的学习算法可以收敛多达两个数量级,并且与常规强化学习算法相比,可以收敛高达三个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号