首页> 外文期刊>Mobile Computing, IEEE Transactions on >Adaptive Duty Cycling for Place-Centric Mobility Monitoring using Zero-Cost Information in Smartphone
【24h】

Adaptive Duty Cycling for Place-Centric Mobility Monitoring using Zero-Cost Information in Smartphone

机译:在智能手机中使用零成本信息进行以地点为中心的移动性监控的自适应占空比

获取原文
获取原文并翻译 | 示例

摘要

Smartphones enable the collection of mobility data using various sensors. The key challenge in the collection of continuous data is to overcome the limited battery capacity of the device. While extensive research has been conducted to solve energy issues in continuous mobility learning, we argue that previous works have not reached optimal performance. In this paper, we propose an energy-efficient mobility monitoring system, FreeTrack, to collect place-centric mobility data with minimum energy consumption in everyday life. We first analyzed the regularity of life patterns, cellular connection patterns, and battery charging behaviors of 94 smartphone users to examine important features related to human mobility. Based on our findings, we design an adaptive duty cycling scheme that uses zero-cost information (i.e., regular mobility, cell connection, and battery state) as low-level sensing to infer location change without the need to activate sensors. We model the location inference on the Hidden Markov Model and optimize the sensing schedule of individual smartphones for real-time operation. Our extensive experiment with 48 smartphone users shows that the proposed system achieves an energy saving of about 68% over previous works, yet still correctly traces 97% of mobility with (0.2pm 0.5) places misses in a day.
机译:智能手机可以使用各种传感器来收集移动性数据。收集连续数据的关键挑战是克服设备有限的电池容量。尽管已经进行了广泛的研究来解决连续移动学习中的能源问题,但我们认为以前的工作尚未达到最佳性能。在本文中,我们提出了一种高效节能的移动性监控系统FreeTrack,以最小的能源消耗来收集以地点为中心的移动性数据。我们首先分析了94位智能手机用户的生活模式,蜂窝连接模式和电池充电行为的规律性,以研究与人类移动性相关的重要功能。根据我们的发现,我们设计了一种自适应占空比循环方案,该方案使用零成本信息(即常规移动性,电池连接和电池状态)作为低级感测来推断位置变化而无需激活传感器。我们在隐马尔可夫模型上对位置推断进行建模,并针对实时操作优化单个智能手机的感应时间表。我们对48个智能手机用户进行的广泛实验表明,所建议的系统比以前的工作节省了约68%的能源,但仍能正确跟踪97%的移动性,每天(0.2pm 0.5)丢失位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号