首页> 外文期刊>IEEE transactions on mobile computing >Optimizing Spatial and Temporal Reuse inWireless Networks by Decentralized Partially Observable Markov Decision Processes
【24h】

Optimizing Spatial and Temporal Reuse inWireless Networks by Decentralized Partially Observable Markov Decision Processes

机译:通过分散的部分可观察的马尔可夫决策过程优化无线网络的时空复用

获取原文
获取原文并翻译 | 示例

摘要

The performance of medium access control (MAC) depends on both spatial locations and traffic patterns of wireless agents. In contrast to conventional MAC policies, we propose a MAC solution that adapts to the prevailing spatial and temporal opportunities. The proposed solution is based on a decentralized partially observable Markov decision process (DEC-POMDP), which is able to handle wireless network dynamics described by a Markov model. A DEC-POMDP takes both sensor noise and partial observations into account, and yields MAC policies that are optimal for the network dynamics model. The DEC-POMDP MAC policies can be optimized for a freely chosen goal, such as maximal throughput or minimal latency, with the same algorithm. We make approximate optimization efficient by exploiting problem structure: the policies are optimized by a factored DEC-POMDP method, yielding highly compact state machine representations for MAC policies. Experiments show that our approach yields higher throughput and lower latency than CSMA/CA based comparison methods adapted to the current wireless network configuration.
机译:媒体访问控制(MAC)的性能取决于无线代理的空间位置和流量模式。与传统的MAC策略相比,我们提出了一种MAC解决方案,以适应当前的时空机遇。所提出的解决方案基于分散的可观察的马尔可夫决策过程(DEC-POMDP),该过程能够处理由马尔可夫模型描述的无线网络动态。 DEC-POMDP同时考虑了传感器噪声和部分观测值,并生成了针对网络动力学模型最优化的MAC策略。可以使用相同算法针对自由选择的目标(例如最大吞吐量或最小延迟)优化DEC-POMDP MAC策略。我们通过利用问题结构来提高近似优化的效率:通过分解的DEC-POMDP方法对策略进行优化,从而为MAC策略生成了高度紧凑的状态机表示形式。实验表明,与适用于当前无线网络配置的基于CSMA / CA的比较方法相比,我们的方法可产生更高的吞吐量和更低的延迟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号