首页> 外文期刊>Mobile Computing, IEEE Transactions on >Exploiting Client-Side Collected Measurements to Perform QoS Assessment of IaaS
【24h】

Exploiting Client-Side Collected Measurements to Perform QoS Assessment of IaaS

机译:利用客户端收集的测量来执行IaaS的QoS评估

获取原文
获取原文并翻译 | 示例

摘要

Delivering reliable service offerings to clients remain a challenging aspect in today's cloud infrastructure. A broad number of research studies have undertaken the service evaluation process from one side; that is, the infrastructure's perspective. Conversely, clients’ assessment to the service has been mostly neglected. In this paper, we propose a client-side service evaluation approach which mainly relies on the clients’ assessment of infrastructure's service offerings. The proposed approach utilizes the strength of the Social Network Analysis (SNA) principles in conjunction with the Generalized Extreme Value Theorem (EVT) to converge to a precise Quality of Service (QoS) model. Our goal in this research is to build precise QoS models to predict the performance of clients that exhibit similar behaviors. Thus, we develop a novel SNA-based clustering algorithm that analyzes the strength of the interconnection links between clients and cluster related clients in communities of similar behaviors. The proposed approach is effective in providing Infrastructure as a Service (IaaS) providers with a better assessment tool to evaluate and improve their service offerings. The experimental results of the proposed approach on GENI's SEATTLE platform demonstrate its ability to enhance the prediction process of the performance of IaaS service offerings.
机译:在当今的云基础架构中,向客户提供可靠的服务仍然是一个充满挑战的方面。大量的研究从一侧进行了服务评估过程。也就是说,基础架构的观点。相反,客户对服务的评估大多被忽略了。在本文中,我们提出了一种客户端服务评估方法,该方法主要依赖于客户对基础架构服务产品的评估。所提出的方法结合了社交网络分析(SNA)原理的优势以及广义极值定理(EVT),以收敛到精确的服务质量(QoS)模型。我们在这项研究中的目标是建立精确的QoS模型,以预测表现出类似行为的客户端的性能。因此,我们开发了一种新颖的基于SNA的聚类算法,该算法分析了相似行为社区中的客户端与群集相关客户端之间的互连链接的强度。所建议的方法可有效地为基础架构即服务(IaaS)提供商提供更好的评​​估工具,以评估和改进其服务产品。在GENI的SEATTLE平台上提出的方法的实验结果证明了其增强IaaS服务产品性能预测过程的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号