首页> 外文期刊>Mobile Computing, IEEE Transactions on >Towards Maximizing Timely Content Delivery in Delay Tolerant Networks
【24h】

Towards Maximizing Timely Content Delivery in Delay Tolerant Networks

机译:努力在容错网络中最大程度地及时交付内容

获取原文
获取原文并翻译 | 示例

摘要

Many applications, such as product promotion advertisement and traffic congestion notification, benefit from opportunistic content exchange in Delay Tolerant Networks (DTNs). An important requirement of such applications is timely delivery. However, the intermittent connectivity of DTNs may significantly delay content exchange, and cannot guarantee timely delivery. The state-of-the-arts capture mobility patterns or social properties of mobile devices. Such solutions do not capture patterns of delivered content in order to optimize content delivery. Without such optimization, the content demanded by a large number of subscribers could follow the same forwarding path as the content by only one subscriber, leading to traffic congestion and packet drop. To address the challenge, in this paper, we develop a solution framework, namely , for timely delivery. In detail, we first leverage content properties to derive an optimal routing hop count of each content to maximize the number of needed nodes. Next, we develop node utilities to capture interests, capacity and locations of mobile devices. Finally, the distributed forwarding scheme leverages the optimal routing hop count and node utilities to deliver content towards the needed nodes in a timely manner. Illustrative results verify that achieves comparable delivery ratio as Epidemic but with much lower overhead.
机译:产品推广广告和流量拥塞通知等许多应用程序都受益于延迟容忍网络(DTN)中的机会内容交换。这种应用程序的重要要求是及时交付。但是,DTN的间歇性连接可能会严重延迟内容交换,并且不能保证及时交付。最新技术可捕获移动设备的移动性模式或社会属性。此类解决方案不捕获所传递内容的模式以优化内容传递。如果没有这种优化,大量订户所要求的内容可能会与仅一个订户所遵循的内容具有相同的转发路径,从而导致流量拥塞和数据包丢失。为了解决这一挑战,我们在本文中开发了一个解决方案框架,即及时交付。详细地说,我们首先利用内容属性来推导每个内容的最佳路由跳数,以最大化所需节点的数量。接下来,我们开发节点实用程序来捕获移动设备的兴​​趣,容量和位置。最后,分布式转发方案利用最佳路由跳数和节点实用程序,将内容及时传递到所需的节点。说明性结果证明,该方法可实现与流行病相当的交付率,但开销要低得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号