首页> 外文期刊>Mobile Computing, IEEE Transactions on >Downlink Power Control in Self-Organizing Dense Small Cells Underlaying Macrocells: A Mean Field Game
【24h】

Downlink Power Control in Self-Organizing Dense Small Cells Underlaying Macrocells: A Mean Field Game

机译:自组织密集小蜂窝在宏蜂窝下面的下行链路功率控制:平均场博弈

获取原文
获取原文并翻译 | 示例

摘要

A novel distributed power control paradigm is proposed for dense small cell networks co-existing with a traditional macrocellular network. The power control problem is first modeled as a stochastic game and the existence of the Nash Equilibrium is proven. Then, we extend the formulated stochastic game to a mean field game (MFG) considering a highly dense network. An MFG is a special type of differential game which is ideal for modeling the interactions among a large number of entities. We analyze the performance of two different cost functions for the mean field game formulation. Both of these cost functions are designed using stochastic geometry analysis in such a way that the cost functions are valid for the MFG setting. A finite difference algorithm is then developed based on the Lax-Friedrichs scheme and Lagrange relaxation to solve the corresponding MFG. Each small cell base station can independently execute the proposed algorithm offline, i.e., prior to data transmission. The output of the algorithm shows how each small cell base station should adjust its transmit power in order to minimize the cost over a predefined period of time. Moreover, sufficient conditions for the uniqueness of the mean field equilibrium for a generic cost function are also given. The effectiveness of the proposed algorithm is demonstrated via numerical results.
机译:针对与传统宏蜂窝网络共存的密集小蜂窝网络,提出了一种新颖的分布式功率控制范式。首先将功率控制问题建模为一个随机博弈,并证明了纳什均衡的存在。然后,考虑到高度密集的网络,我们将制定的随机博弈扩展为平均场博弈(MFG)。 MFG是一种特殊的差分游戏,非常适合对大量实体之间的交互进行建模。我们分析了两种不同成本函数的平均现场博弈公式的性能。这两个成本函数都是使用随机几何分析设计的,因此成本函数对MFG设置有效。然后基于Lax-Friedrichs方案和Lagrange弛豫开发了一种有限差分算法来求解相应的MFG。每个小型小区基站可以脱机即在数据传输之前独立地执行所提出的算法。该算法的输出显示了每个小型小区基站应如何调整其发射功率,以在预定的时间段内最小化成本。此外,还给出了通用成本函数的平均场平衡唯一性的充分条件。数值结果证明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号