首页> 外文期刊>IEEE transactions on mobile computing >Behavior Based Human Authentication on Touch Screen Devices Using Gestures and Signatures
【24h】

Behavior Based Human Authentication on Touch Screen Devices Using Gestures and Signatures

机译:使用手势和签名的触摸屏设备上基于行为的人类身份验证

获取原文
获取原文并翻译 | 示例

摘要

With the rich functionalities and enhanced computing capabilities available on mobile computing devices with touch screens, users not only store sensitive information (such as credit card numbers) but also use privacy sensitive applications (such as online banking) on these devices, which make them hot targets for hackers and thieves. To protect private information, such devices typically lock themselves after a few minutes of inactivity and prompt a password/PIN/pattern screen when reactivated. Passwords/ PINs/patterns based schemes are inherently vulnerable to shoulder surfing attacks and smudge attacks. In this paper, we propose BEAT, an authentication scheme for touch screen devices that authenticates users based on their behavior of performing certain actions on the touch screens. An action is either a gesture, which is a brief interaction of a user's fingers with the touch screen such as swipe rightwards, or a signature, which is the conventional unique handwritten depiction of one's name. Unlike existing authentication schemes for touch screen devices, which use what user inputs as the authentication secret, BEAT authenticates users mainly based on howthey input, using distinguishing features such as velocity, device acceleration, and stroke time. Even if attackers see what action a user performs, they cannot reproduce the behavior of the user doing those actions through shoulder surfing or smudge attacks. We implemented BEATon Samsung Focus smart phones and Samsung Slate tablets running Windows, collected 15,009 gesture samples and 10,054 signature samples, and conducted real-time experiments to evaluate its performance. Experimental results show that, with only 25 training samples, for gestures, BEATachieves an average equal error rate of 0.5 percent with three gestures and for signatures, it achieves an average equal error rate of 0.52 percent with single signature.
机译:借助带触摸屏的移动计算设备上可用的丰富功能和增强的计算功能,用户不仅可以存储敏感信息(例如信用卡号),而且可以在这些设备上使用对隐私敏感的应用程序(例如在线银行业务),这使它们变得很热门。黑客和小偷的目标。为了保护私人信息,此类设备通常会在闲置几分钟后锁定自己,并在重新激活时提示输入密码/ PIN /模式屏幕。基于密码/ PIN /模式的方案天生就容易受到肩膀冲浪攻击和污迹攻击。在本文中,我们提出了BEAT,一种用于触摸屏设备的身份验证方案,该方案根据用户在触摸屏上执行某些操作的行为来对用户进行身份验证。动作可以是手势(即用户手指与触摸屏的短暂交互,例如向右滑动),也可以是签名,即签名的一种传统的独特手写体。与现有的触摸屏设备身份验证方案使用用户输入的内容作为身份验证密钥不同,BEAT主要根据用户输入的内容来进行用户身份验证,并使用速度,设备加速度和行程时间等独特功能。即使攻击者看到了用户执行的操作,他们也无法通过肩膀冲浪或弄脏攻击来重现用户执行这些操作的行为。我们实施了运行Windows的BEATon Samsung Focus智能手机和Samsung Slate平板电脑,收集了15,009个手势样本和10,054个签名样本,并进行了实时实验以评估其性能。实验结果表明,只有25个训练样本,对于手势,BEAT在三个手势和签名中均达到0.5%的平均均等错误率,而对于单个签名而言,BEAT则可实现0.52%的平均均等错误率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号