首页> 外文期刊>IEEE transactions on mobile computing >A Fine-Grained Indoor Location-Based Social Network
【24h】

A Fine-Grained Indoor Location-Based Social Network

机译:基于室内位置的细粒度社交网络

获取原文
获取原文并翻译 | 示例

摘要

Existing Location-based social networks (LBSNs), e.g., Foursquare, depend mainly on GPS or cellular-based localization to infer users’ locations. However, GPS is unavailable indoors and cellular-based localization provides coarse-grained accuracy. This limits the accuracy of current LBSNs in indoor environments, where people spend 89 percent of their time. This in turn affects the user experience, in terms of the accuracy of the ranked list of venues, especially for the small screens of mobile devices, misses business opportunities, and leads to reduced venues coverage. In this paper, we present CheckInside: a system that can provide a fine-grained indoor location-based social network. CheckInside leverages the crowd-sensed data collected from users’ mobile devices during the check-in operation and knowledge extracted from current LBSNs to associate a place with a logical name and a semantic fingerprint. This semantic fingerprint is used to obtain a more accurate list of nearby places as well as to automatically detect new places with similar signature. A novel algorithm for detecting fake check-ins and inferring a semantically-enriched floorplan is proposed as well as an algorithm for enhancing the system performance based on the user implicit feedback. Furthermore, CheckInside encompasses a coverage extender module to automatically predict names of new venues increasing the coverage of current LBSNs. Experimental evaluation of CheckInside in four malls over the course of six weeks with 20 participants shows that it can infer the actual user place within the top five venues 99 percent of the time. This is compared to 17 percent only in the case of current LBSNs. In addition, it increases the coverage of existing LBSNs by more than 37 percent.
机译:现有的基于位置的社交网络(LBSN)(例如Foursquare)主要依靠GPS或基于蜂窝的本地化来推断用户的位置。但是,GPS在室内不可用,并且基于蜂窝的定位提供了粗粒度的准确性。这限制了当前LBSN在室内环境中的准确性,在该环境中,人们花费其时间的89%。反过来,就场所排名列表的准确性(特别是对于移动设备的小屏幕而言)而言,这会影响用户体验,错失商机,并导致场所覆盖率降低。在本文中,我们介绍CheckInside:一个可以提供室内细粒度基于位置的社交网络的系统。 CheckInside利用在签到操作期间从用户移动设备收集的人群感知数据以及从当前LBSN提取的知识,将地点与逻辑名称和语义指纹相关联。该语义指纹用于获取附近地点的更准确列表,以及自动检测具有相似签名的新地点。提出了一种检测虚假签到,推断语义丰富的平面图的新算法,以及一种基于用户隐式反馈的增强系统性能的算法。此外,CheckInside包含一个覆盖范围扩展模块,可自动预测新场所的名称,从而增加当前LBSN的覆盖范围。在六个星期的时间里,有20名参与者在四个购物中心中对CheckInside进行了实验评估,结果表明,它可以在99%的时间内推断出前五名场所中的实际用户位置。相比之下,仅在当前的LBSN中只有17%。此外,它使现有LBSN的覆盖范围增加了37%以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号