首页> 外文期刊>IEEE transactions on mobile computing >Differentially Private Location Protection for Worker Datasets in Spatial Crowdsourcing
【24h】

Differentially Private Location Protection for Worker Datasets in Spatial Crowdsourcing

机译:空间众包中针对工人数据集的差分私有位置保护

获取原文
获取原文并翻译 | 示例

摘要

Spatial Crowdsourcing (SC) is a transformative platform that engages individuals in collecting and analyzing environmental, social, and other spatio-temporal information. SC outsources spatio-temporal tasks to a set of workers, i.e., individuals with mobile devices that perform the tasks by physically traveling to specified locations. However, current solutions require the workers to disclose their locations to untrusted parties. In this paper, we introduce a framework for protecting location privacy of workers participating in SC tasks. We propose a mechanism based on differential privacy and geocasting that achieves effective SC services while offering privacy guarantees to workers. We address scenarios with both static and dynamic (i.e., moving) datasets of workers. Experimental results on real-world data show that the proposed technique protects location privacy without incurring significant performance overhead.
机译:空间众包(SC)是一个变革性的平台,可让个人参与收集和分析环境,社会及其他时空信息。 SC将时空任务外包给一组工人,即具有移动设备的个人,这些设备通过物理上移动到指定位置来执行任务。但是,当前的解决方案要求工人向不信任方披露其位置。在本文中,我们介绍了一个用于保护参与SC任务的工人的位置隐私的框架。我们提出了一种基于差分隐私和地理广播的机制,该机制可在为员工提供隐私保障的同时实现有效的SC服务。我们通过静态和动态(即移动)工人数据集解决方案。对现实世界数据的实验结果表明,所提出的技术可以保护位置隐私,而不会产生明显的性能开销。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号