首页> 外文期刊>Mobile Computing, IEEE Transactions on >Discovering Periodic Patterns for Large Scale Mobile Traffic Data: Method and Applications
【24h】

Discovering Periodic Patterns for Large Scale Mobile Traffic Data: Method and Applications

机译:发现大规模移动流量数据的周期性模式:方法和应用

获取原文
获取原文并翻译 | 示例

摘要

Understanding the temporal traffic load profile of cellular networks is extremely valuable to many network operation tasks in large mobile networks. Such knowledge is useful for network planning, improving network performance, designing better load balancing schemes, testing handoff algorithms, and proposing new charging mechanisms. This paper proposes a simple yet powerful method to model the temporal traffic profile by a large 3G/LTE cellular network dataset in a metropolitan area, consisting of 9 thousand base stations and 3.5 million subscribers. Specifically, using the spectrum-based analysis, we extract three major frequency components, which captures the weekly, daily, and hourly temporal patterns in the traffic load across base stations. By clustering the traffic utilizing the features extracted from spectrum-domain components, we find that urban scale cellular traffic can be classified into five groups, which maps to five types of geographic locations. Besides the comprehensive analysis, we apply this model to two applications: predicting the future traffic load, and designing a load based pricing scheme, where we demonstrate the usefulness of our model and analysis results.
机译:对于大型移动网络中的许多网络操作任务而言,了解蜂窝网络的时间流量负载状况非常有价值。这些知识对于网络规划,改善网络性能,设计更好的负载平衡方案,测试切换算法以及提出新的计费机制很有用。本文提出了一种简单但功能强大的方法,该方法可以通过一个大城市中的大型3G / LTE蜂窝网络数据集(包括9000个基站和350万个用户)来对时间流量配置文件进行建模。具体而言,使用基于频谱的分析,我们提取了三个主要的频率分量,它们捕获了基站之间流量负载中的每周,每日和每小时的时间模式。通过利用从频谱域组​​件中提取的特征对流量进行聚类,我们发现城市规模的蜂窝流量可以分为五类,它们映射到五种地理位置。除了综合分析之外,我们将此模型应用于两个应用程序:预测未来的流量负荷,以及设计基于负荷的定价方案,在此我们证明模型和分析结果的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号