首页> 外文期刊>Mobile Computing, IEEE Transactions on >Sophisticated Online Learning Scheme for Green Resource Allocation in 5G Heterogeneous Cloud Radio Access Networks
【24h】

Sophisticated Online Learning Scheme for Green Resource Allocation in 5G Heterogeneous Cloud Radio Access Networks

机译:5G异构云无线接入网中绿色资源分配的复杂在线学习方案

获取原文
获取原文并翻译 | 示例

摘要

5G is the upcoming evolution for the current cellular networks that aims at satisfying the future demand for data services. Heterogeneous cloud radio access networks (H-CRANs) are envisioned as a new trend of 5G that exploits the advantages of heterogeneous and cloud radio access networks to enhance spectral and energy efficiency. Remote radio heads (RRHs) are small cells utilized to provide high data rates for users with high quality of service (QoS) requirements, while high power macro base station (BS) is deployed for coverage maintenance and low QoS users service. Inter-tier interference between macro BSs and RRHs and energy efficiency are critical challenges that accompany resource allocation in H-CRANs. Therefore, we propose an efficient resource allocation scheme using online learning, which mitigates interference and maximizes energy efficiency while maintaining QoS requirements for all users. The resource allocation includes resource blocks (RBs) and power. The proposed scheme is implemented using two approaches: centralized, where the resource allocation is processed at a controller integrated with the baseband processing unit and decentralized, where macro BSs cooperate to achieve optimal resource allocation strategy. To foster the performance of such sophisticated scheme with a model free learning, we consider users’ priority in RB allocation and compact state representation learning methodology to improve the speed of convergence and account for the curse of dimensionality during the learning process. The proposed scheme including both approaches is implemented using software defined radios testbed. The obtained results and simulation results confirm that the proposed resource allocation solution in H-CRANs increases the energy efficiency significantly and maintains users’ QoS.
机译:5G是当前蜂窝网络的即将到来的演进,旨在满足未来对数据服务的需求。异构云无线电接入网(H-CRAN)被设想为5G的新趋势,它利用异构和云无线电接入网的优势来提高频谱和能源效率。远程无线电头(RRH)是用于为具有高服务质量(QoS)要求的用户提供高数据速率的小型小区,而高功率宏基站(BS)则用于覆盖范围维护和低QoS用户服务。宏BS和RRH之间的层间干扰以及能效是H-CRAN中资源分配的关键挑战。因此,我们提出了一种使用在线学习的有效资源分配方案,该方案可在保持所有用户的QoS要求的同时减轻干扰并最大程度地提高能效。资源分配包括资源块(RB)和功率。所提出的方案使用两种方法来实现:集中式,其中资源分配在与基带处理单元集成的控制器上进行处理;分散式,其中宏BS协作以实现最佳资源分配策略。为了通过无模型学习来提高这种复杂方案的性能,我们考虑了用户在RB分配和紧凑状态表示学习方法上的优先级,以提高收敛速度并解决学习过程中的维度诅咒。使用软件定义的无线电测试台来实现包括两种方法的建议方案。仿真结果表明,所提出的H-CRAN中的资源分配方案可以显着提高能源效率,并保持用户的QoS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号