首页> 外文期刊>Mobile Computing, IEEE Transactions on >CamK: Camera-Based Keystroke Detection and Localization for Small Mobile Devices
【24h】

CamK: Camera-Based Keystroke Detection and Localization for Small Mobile Devices

机译:CamK:小型移动设备的基于相机的按键检测和本地化

获取原文
获取原文并翻译 | 示例

摘要

Because of the smaller size of mobile devices, text entry with on-screen keyboards becomes inefficient. Therefore, we present CamK, a camera-based text-entry method, which can use a panel (e.g., a piece of paper) with a keyboard layout to input text into small devices. With the built-in camera of the mobile device, CamK captures images during the typing process and utilizes image processing techniques to recognize the typing behavior, i.e., extract the keys, track the user's fingertips, detect, and locate keystrokes. To achieve high accuracy of keystroke localization and low false positive rate of keystroke detection, CamK introduces the initial training and online calibration. To reduce the time latency, CamK optimizes computation-intensive modules by changing image sizes, focusing on target areas, introducing multiple threads, removing the operations of writing or reading images. Finally, we implement CamK on mobile devices running Android. Our experimental results show that CamK can achieve above 95 percent accuracy in keystroke localization, with only a 4.8 percent false positive rate. When compared with on-screen keyboards, CamK can achieve a 1.25X typing speedup for regular text input and 2.5X for random character input. In addition, we introduce word prediction to further improve the input speed for regular text by 13.4 percent.
机译:由于移动设备的尺寸较小,因此使用屏幕键盘输入文本的效率很低。因此,我们提出了CamK,这是一种基于相机的文本输入方法,可以使用键盘布局的面板(例如,一张纸)将文本输入到小型设备中。借助移动设备的内置摄像头,CamK可以在键入过程中捕获图像,并利用图像处理技术来识别键入行为,即提取键,跟踪用户的指尖,检测和定位键击。为了实现高精度的击键定位和低的击键误报率,CamK引入了初始训练和在线校准。为了减少时间延迟,CamK通过更改图像大小,关注目标区域,引入多个线程,消除了写入或读取图像的操作来优化计算密集型模块。最后,我们在运行Android的移动设备上实现CamK。我们的实验结果表明,CamK可以在击键定位中达到95%以上的准确率,而假阳性率只有4.8%。与屏幕键盘相比,CamK可以将常规文本输入的打字速度提高1.25倍,将随机字符输入的打字速度提高2.5倍。此外,我们引入了单词预测功能,可将常规文本的输入速度进一步提高13.4%。

著录项

  • 来源
    《Mobile Computing, IEEE Transactions on》 |2018年第10期|2236-2251|共16页
  • 作者单位

    State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China;

    Department of Computer Science, College of William and Mary, Williamsburg, VA;

    State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China;

    Department of Computer Science, College of William and Mary, Williamsburg, VA;

    Computer Science Department, Franklin and Marshall College, Lancaster, PA;

    State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Keyboards; Cameras; Mobile handsets; Image processing; Mobile computing; Thumb; Presses;

    机译:键盘;相机;手机;图像处理;移动计算;拇指;按键;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号