首页> 外文期刊>Mobile Computing, IEEE Transactions on >Bi-View Semi-Supervised Learning Based Semantic Human Activity Recognition Using Accelerometers
【24h】

Bi-View Semi-Supervised Learning Based Semantic Human Activity Recognition Using Accelerometers

机译:基于双视角半监督学习的基于加速度计的语义人类活动识别

获取原文
获取原文并翻译 | 示例

摘要

Semantic human activity (SHA) refers to users' activities performed in their daily lives (e.g., having dinner, shopping, etc.). SHA recognition is a promising issue in wearable and mobile computing. Most existing methods represent a SHA based on a single view, e.g., representing a SHA as a combination of human body actions, representing a SHA as a distribution of latent semantics. Since SHAs are complicated in nature, single views lack the ability of comprehensively profiling SHAs. In this paper, we propose a bi-view semi-supervised learning based method for recognizing SHAs using accelerometers. First, we represent a SHA based on two different views. One view represents a SHA as a distribution of latent activities in an unsupervised manner, and the other view represents a SHA as a set of human crafted features extracted in a hierarchical way. Second, we use a semi-supervised learning framework, which exploits the complementary information provided by the two views, to improve the classification accuracy based on both labeled and unlabeled data. Extensive experiments show that representing SHAs based on bi-views is more effective than representing SHAs based on single views, and our method is able to yield a competitive SHA recognition performance.
机译:语义人类活动(SHA)是指用户在日常生活中进行的活动(例如,吃晚饭,逛街等)。 SHA识别在可穿戴和移动计算中是一个有前途的问题。现有的大多数方法都基于单个视图表示SHA,例如将SHA表示为人体动作的组合,将SHA表示为潜在语义的分布。由于SHA的性质很复杂,因此单个视图缺乏全面分析SHA的功能。在本文中,我们提出了一种基于双视角半监督学习的基于加速度计的SHA识别方法。首先,我们基于两个不同的视图表示SHA。一个视图将SHA表示为无监督方式下的潜伏活动分布,另一个视图将SHA表示为以分层方式提取的一组人工特征。其次,我们使用一个半监督的学习框架,该框架利用两个视图提供的补充信息,以提高基于标记和未标记数据的分类准确性。大量实验表明,基于双视图的SHA表示比基于单视图的SHA表示更有效,并且我们的方法能够产生具有竞争力的SHA识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号