首页> 外文期刊>IEEE transactions on mobile computing >MOERA: Mobility-Agnostic Online Resource Allocation for Edge Computing
【24h】

MOERA: Mobility-Agnostic Online Resource Allocation for Edge Computing

机译:MOERA:用于边缘计算的与移动性无关的在线资源分配

获取原文
获取原文并翻译 | 示例

摘要

To better support emerging interactive mobile applications such as those V R-/AR-based, cloud computing is quickly evolving into a new computing paradigm called edge computing. Edge computing has the promise of bringing cloud resources to the network edge to augment the capability of mobile devices in close proximity to the user. One big challenge in edge computing is the efficient allocation and adaptation of edge resources in the presence of high dynamics imposed by user mobility. This paper provides a formal study of this problem. By characterizing a variety of static and dynamic performance measures with a comprehensive cost model, we formulate the online edge resource allocation problem with a mixed nonlinear optimization problem. We propose MOERA, a mobility-agnostic online algorithm based on the "regularization" technique, which can be used to decompose the problem into separate subproblems with regularized objective functions and solve them using convex programming. Through rigorous analysis we are able to prove that MOERA can guarantee a parameterized competitive ratio, without requiring any a priori knowledge on input. We carry out extensive experiments with various real-world data and show that MOERA can achieve an empirical competitive ratio of less than 1.2, reduces the total cost by 4x compared to static approaches, and outperforms the online greedy one-shot solution by 70 percent. Moreover, we verify that even being future-agnostic, MOERA can achieve comparable performance to approaches with perfect partial future knowledge. We also discuss practical issues with respect to the implementation of our algorithm in real edge computing systems.
机译:为了更好地支持新兴的交互式移动应用程序(例如基于V R / AR的应用程序),云计算正在迅速发展为一种称为边缘计算的新计算范例。边缘计算有望将云资源带到网络边缘,以增强靠近用户的移动设备的功能。边缘计算的一大挑战是在存在用户移动性带来的高动态性的情况下,如何有效地分配和调整边缘资源。本文提供了对此问题的正式研究。通过使用综合成本模型表征各种静态和动态性能指标,我们用混合非线性优化问题来表述在线边缘资源分配问题。我们提出了MOERA,这是一种基于“正则化”技术的与移动性无关的在线算法,可用于将问题分解为具有正则化目标函数的单独子问题,并使用凸规划求解。通过严格的分析,我们能够证明MOERA可以保证参数化的竞争比率,而无需任何先验输入知识。我们对各种现实世界的数据进行了广泛的实验,结果表明,与静态方法相比,MOERA的经验竞争率小于1.2,总成本降低了4倍,并且比在线贪婪的一站式解决方案高出70%。此外,我们证实,即使对未来无知,MOERA仍可以取得与具有完善的部分未来知识的方法相当的性能。我们还将讨论有关在实际边缘计算系统中实现算法的实际问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号