首页> 外文期刊>IEEE transactions on mobile computing >Algorithms and Position Optimization for a Decentralized Localization Platform Based on Resource-Constrained Devices
【24h】

Algorithms and Position Optimization for a Decentralized Localization Platform Based on Resource-Constrained Devices

机译:基于资源受限设备的分散式定位平台算法与位置优化

获取原文
获取原文并翻译 | 示例

摘要

As a step towards ubiquitous and mobile computing, a decentralized localization platform allows positioning for objects and persons. The decentralized computation of the position enables to shift the application-level knowledge into a Mobile Station (MS) and avoids the communication with a remote device such as a server. In addition, computing a position on resource-constrained devices is challenging due to the restricted storage, computing capacity, and power supply. Therefore, we propose suitable algorithms to compute unoptimized as well as optimized positions on resource-limited MSs. Algorithms for unoptimized positions will be analyzed with respect to the stability, complexity, and memory requirements. The calculated positions are optimized by using the Gauss-Newton (GNM) or Levenberg-Marquardt methods (LVMs). We analyze and compare the GNM with two variants of the LVM algorithm. Furthermore, we develop an adaptive algorithm for the position optimization, which is based on the Singular Value Decomposition (SVD), LVM algorithm, and the Dilution of Precision. This method allows an adaptive selection mechanism for the LVM algorithm. The influence and choice of the right parameter combination of the LVM algorithm will be analyzed and discussed. Finally, we design and evaluate a method to reduce multipath errors on the MS.
机译:作为迈向无处不在和移动计算的一步,分散的本地化平台允许对物体和人员进行定位。位置的分散计算能够将应用程序级别的知识转移到移动站(MS)中,并避免与诸如服务器之类的远程设备进行通信。另外,由于存储,计算能力和电源的限制,在资源受限的设备上计算位置也是一项挑战。因此,我们提出了合适的算法来在资源受限的MS上计算未优化位置和优化位置。将针对稳定性,复杂性和内存要求来分析未优化位置的算法。通过使用高斯-牛顿(GNM)或Levenberg-Marquardt方法(LVM)来优化计算的位置。我们分析并比较了LVM算法的两个变体与GNM。此外,我们基于奇异值分解(SVD),LVM算法和精度稀释,开发了一种用于位置优化的自适应算法。该方法允许针对LVM算法的自适应选择机制。将分析和讨论LVM算法的正确参数组合的影响和选择。最后,我们设计和评估一种减少MS上多径错误的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号