首页> 外文期刊>Microprocessors and microsystems >Paradigm and performance analysis of distributed frequent itemset mining algorithms based on Mapreduce
【24h】

Paradigm and performance analysis of distributed frequent itemset mining algorithms based on Mapreduce

机译:基于MapReduce的分布式频繁项目集矿业算法的范例与性能分析

获取原文
获取原文并翻译 | 示例

摘要

FrequentItemsetMining (FIM) is one of the most important data mining tasks and is the foundation of many data mining tasks. In Big Data era, centralized FIM algorithms cannot meet the needs of FIM for big data in terms of time and space, so Distributed Frequent Itemset Mining (DFIM) algorithms have been designed to meet the above challenges. In this paper, LocalGlobal and RedistributionMining which are two main paradigms of DFIM algorithm are discussed; Two algorithms of these paradigms on MapReduce named LG and RM are proposed while MapReduce is a popular distributed computing model, and also the related work is discussed. The experimental results show that the RM algorithm has better performance in terms of computation and scalability of sites, and can be used as the basis for designing the DFIM algorithm based on MapReduce. This paper also discusses the main ideas of improving the DFIM algorithms based on MapReduce.
机译:MirosentItemsetMining(FIM)是最重要的数据挖掘任务之一,是许多数据挖掘任务的基础。 在大数据时代,集中的FIM算法在时间和空间方面无法满足大数据的FIM的需求,因此旨在旨在满足上述挑战的分布式频繁项目集挖掘(DFIM)算法。 在本文中,讨论了局部灯节和再分配,这是DFIM算法的两个主要范式的局限; 提出了两个名为LG和RM的MapRadigms的两个算法,而MapReduce是一个流行的分布式计算模型,也讨论了相关的工作。 实验结果表明,RM算法在站点的计算和可扩展性方面具有更好的性能,并且可以用作基于MapReduce设计DFIM算法的基础。 本文还讨论了基于MapReduce改进DFIM算法的主要思想。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号