首页> 外文期刊>Microprocessors and microsystems >Construction of Chinese synonymous nouns discrimination and query system based on the semantic relation of embedded system and LSTM
【24h】

Construction of Chinese synonymous nouns discrimination and query system based on the semantic relation of embedded system and LSTM

机译:基于嵌入式系统和LSTM语义关系的中国同义名词鉴别与查询系统的构建

获取原文
获取原文并翻译 | 示例

摘要

Distributed Semantic Model (DSM) establishes their standards for expressing the meaning of words and sentences. DSM provides a quantitative measure of the two language representation is how closely related; it is not possible to automatically classify the different semantic relationships. Chinese semantic analysis methods and stacked two-way long in Word2Vec model, Long Short-Term Memory (stack LSTM) model. The Word2Vec model to capture the word?s semantic features was transferred as a high-dimensional word vector and the first words and evaluated the performance of two typical Word2Vec model: Skip grams and Continuous Bag-Of-Words (CBOW). After that, it will use the LSTM models are stacked for feature extraction of continuous word vector. Therefore, the concept of similarity of meaning is not yet in the DSM. An effort to solve the problem of underspecification will introduce the evolution embedded system. Also, are a different kind of test of the career of automatic learning the words of these semantic relationships, will evaluate them both that there is no teacher in the teaching environment, the distribution model is, in many cases, in general, to find that it is possible to specify a high similarity score for its synonym, deep learning classifier is the best in recognition of semantic relationships.
机译:分布式语义模型(DSM)确定表达单词和句子含义的标准。 DSM提供了两种语言表示的定量衡量标准是如何密切相关;无法自动分类不同的语义关系。汉语语义分析方法,堆叠双向长度在Word2VEC模型中,长短短期内存(堆栈LSTM)模型。要捕获字的Word2Vec模型作为高维文字矢量和第一单词,并评估了两个典型Word2VEC模型的性能:跳过克和连续的单词(CBOW)。之后,它将使用LSTM模型堆叠用于连续字向量的特征提取。因此,尚未在DSM中尚未成为含义的相似性的概念。解决underspecification问题的努力将介绍进化嵌入式系统。另外,是一种不同的自动学习职业测试这些语义关系的话,将评估他们在教学环境中没有老师,在许多情况下,一般来说,要找到这种情况可以为其同义词指定高相似度分数,深度学习分类器是最佳的识别语义关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号