首页> 外文期刊>Microprocessors and microsystems >Virtual simulation design and effect of high jump technology action optimization based on complex embedded system
【24h】

Virtual simulation design and effect of high jump technology action optimization based on complex embedded system

机译:基于复杂嵌入式系统的高跳跃技术动作优化的虚拟仿真设计与效果

获取原文
获取原文并翻译 | 示例

摘要

It proposes a programmed human movement investigation and movement acknowledgement for serious video test programs. Four significant human focuses are recognized and used by powerful camera estimation and target localization methods to calculate human contour tracking. Statistical analysis of tracking point movements finds time divisions for upward runs and jump levels. This method uses a motion image test from camera movement, and the athlete?s performance characteristics are robust and independent of pole vaulting, high jumps, triple jumps and long jumps. Experimental results are sufficient to show that the program is running with complex content and motion sequences. The proposed Extended Convolutional Neural Network (RCNN) architecture contains two main modules. First, four significant people are measured and tracked using pre-calculated silhouettes of people. It is calculated using standard algorithms to detect silhouettes and find moving objects in the video. The algorithm?s necessary steps are camera motion estimation, change detection based on Bayesian statistics, and label propagation. The long human axis, upper running and jumping stages of the walk cycle and time division are estimated using a statistical analysis of the tracking point movement. In the second module, the above features are used for behavior recognition tasks.
机译:它提出了一个针对严重视频测试计划的人体运动调查和运动确认。通过强大的相机估计和目标本地化方法来认可和使用四个重要人类重点以计算人的轮廓跟踪。跟踪点运动的统计分析找到了向上运行和跳跃水平的时间分区。该方法使用相机运动的运动图像测试,运动员的性能特征是坚固,独立于极跳,高跳跃,三重跳跃和长跳跃。实验结果足以表明该程序运行复杂的内容和运动序列。所提出的扩展卷积神经网络(RCNN)架构包含两个主要模块。首先,使用预先计算的人的剪影来测量和跟踪四个重要人物。它是使用标准算法计算的,以检测剪影并找到视频中的移动对象。算法是必要的步骤是相机运动估计,基于贝叶斯统计的改变检测,并标记传播。使用跟踪点运动的统计分析估计步行周期和时间划分的长人轴,上运行和跳跃阶段。在第二模块中,上述特征用于行为识别任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号