首页> 外文期刊>Microprocessors and microsystems >Research on inversion of ecosystem dynamics model parameters based on improved Neural Network algorithm
【24h】

Research on inversion of ecosystem dynamics model parameters based on improved Neural Network algorithm

机译:基于改进神经网络算法的生态系统动力学模型参数的反演研究

获取原文
获取原文并翻译 | 示例

摘要

Bayesian probability reversal and Markov chain Monte Carlo (MCMC) techniques were used in the regional environmental model to evaluate carbon (C) conversion coefficient and simulate carbon pool size uncertainty. Six data sets of C were used on soil respiration, tree biology, bio-leaves, litter, bed layer C, mineral soil measured under CO 2 (350 ppm) in these two contexts, and six data levels and liter height. Go 2 (550 ppm) curve. Increasing and better understanding of carbon dioxide levels in the Earth's atmosphere and the global carbon cycle. Web-based time-series models are based on the environment and climate parameters and create deep learning. To avoid a large part of the research and hard data downloads, the Google Earth Engine platform, based on this model can generate, and all input data will be published on the Internet. Variation method of numerical simulation, the global ocean ecosystem dynamics is used. Data Degradation Cycle Current measurement is a useful tool for extracting quantitative information from environmental information. However, to estimate the parameter value in terms of time inversion, it has been reduced that the sample factor can control the amount of spiral data as in the conventional reverse probe model. This research aims to increase the number of data degradation and increase the number of parameters.
机译:在区域环境模型中使用贝叶斯概率逆转和马尔可夫链蒙特卡罗(MCMC)技术来评估碳(C)转换系数和模拟碳池大小不确定性。在这两种情况下,在CO 2(350ppm)下测量的土壤呼吸,树生物学,生物叶,凋落物,床层C,矿物土壤中使用六种数据组C组,六个数据水平和升高度。去2(550 ppm)曲线。增加和更好地了解地球大气层和全球碳循环中的二氧化碳水平。基于Web的时间序列模型基于环境和气候参数,并创造深入学习。为避免大部分研究和硬数据下载,基于此模型的Google地球发动机平台可以生成,并且所有输入数据都将在Internet上发布。使用全局海洋生态系统动态数值模拟的变化方法。数据劣化周期电流测量是一种用于从环境信息中提取定量信息的有用工具。然而,为了在时间反转方面估计参数值,已经减少了样本因子可以控制传统反向探测模型中的螺旋数据量。该研究旨在增加数据劣化的数量并增加参数的数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号