首页> 外文期刊>Microprocessors and microsystems >A medical analytical system using intelligent fuzzy level set brain image segmentation based on improved quantum particle swarm optimization
【24h】

A medical analytical system using intelligent fuzzy level set brain image segmentation based on improved quantum particle swarm optimization

机译:基于改进量子粒子群优化的智能模糊水平集脑图像分割的医学分析系统

获取原文
获取原文并翻译 | 示例

摘要

Medical image segmentation demonstrates a significant part in curative image exploration and dispensation, is a multifaceted and perplexing assignment for reckoning efficiency and dissection precision. Segmenting an image is essential to dissection different components of the image, which is prominent fact to identify region of defect accurately. An Intelligent Fuzzy Level Set Method (IFLSM) along with an over-all search proficiency of Improved Quantum Particle Swarm Optimization (IQPSO) for image segmentation is proposed to improve the steadiness and meticulousness thus aiming at reduction of opening sensitivity. The proposed algorithm aims at optimizing the opening contours by utilizing the IQPSO method in addition with intelligent fuzzy clustering method, and segments the image using enhanced Level Set Method (LSM). A stable cluster head is identified using the comprehensive quest aptitude of IQPSO. The iteration period will also provide a pre-segmentation contour which is nearer to Region of Interest (ROI). The implementation of the proposed work for segmenting brain tissues through Magnetic Image Resonance (MRI) images provides an optimized result which is 15% more than the original FLSM algorithm. The obtained contours from the proposed work shows more stability than the original FLSM. The proposed work shows a promising significant improvement in the image segmentation process.
机译:医学图像分割证明了疗效图像勘探和分配的重要部分,是用于估计效率和解剖精度的多方面和令人困惑的分配。分割图像对于解剖图像的不同组成部分是必不可少的,这是准确地识别缺陷区域的突出事实。提出了一种智能模糊水平集方法(IFLSM)以及改进的量子粒子群优化(IQPSO)的过度搜索熟练,用于改善图像分割,以改善稳定性和细致的旨在降低开口灵敏度。该算法旨在通过利用IQPSO方法使用IQPSO方法来优化开口轮廓,并使用增强级别集方法(LSM)分段图像。使用IQPSO的全面Quest actipity来识别稳定的集群头。迭代时段还将提供预先分割轮廓,其越接近感兴趣区域(ROI)。通过磁性图像谐振(MRI)图像分割脑组织的所提出的工作的实施提供了优化的结果,其比原始FLSM算法大15%。所获得的工作的轮廓显示出比原始FLSM更多的稳定性。拟议的工作表明了图像分割过程的有希望的显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号