首页> 外文期刊>Microprocessors and microsystems >Intrusion detection in networks using crow search optimization algorithm with adaptive neuro-fuzzy inference system
【24h】

Intrusion detection in networks using crow search optimization algorithm with adaptive neuro-fuzzy inference system

机译:使用具有自适应神经模糊推理系统的乌鸦搜索优化算法的网络入侵检测

获取原文
获取原文并翻译 | 示例

摘要

Intrusion detection system has become the fundamental part for the network security and essential for network security because of the expansion of attacks which causes many issues. This is because of the broad development of internet and access to data systems around the world. For detecting the abnormalities present in the network or system, the intrusion detection system (IDS) is used. Because of the large volume of data, the network gets expanded with false alarm rate of intrusion and detection accuracy decreased. This is one of the significant issues when the network experiences unknown attacks. The principle objective was to expand the accuracy and reduce the false alarm rate (FAR). To address the above difficulties the proposed with Crow Search Optimization algorithm with Adaptive Neuro-Fuzzy Inference System (CSO-ANFIS) is used. The ANFIS is the combination of fuzzy interference system and artificial neural network, and to enhance the performance of the ANFIS model the crow search optimization algorithm is used to optimize the ANFIS. The NSL-KDD data set was used to validate the performance of intrusion detection of the proposed model and the experiment results are compared with other existing techniques for overall performance validation. The results of the intrusion detection based on the NSLKDD dataset was better and efficient compared with those models because the detection rate was 95.80% and the FAR result was 3.45%.
机译:由于扩展攻击导致许多问题,入侵检测系统已成为网络安全的基本部分,对网络安全是必不可少的。这是因为广泛发展互联网和世界各地的数据系统。为了检测网络或系统中存在的异常,使用入侵检测系统(ID)。由于数据量大,网络扩展了误报率的入侵和检测精度下降。这是网络经历未知攻击时的重要问题之一。原则目标是扩大准确性并降低误报率(远)。为了解决上述困难,使用具有自适应神经模糊推理系统(CSO-ANFIS)的乌鸦搜索优化算法。 ANFIS是模糊干扰系统和人工神经网络的组合,并增强了ANFIS模型的性能,乌鸦搜索优化算法用于优化ANFIS。 NSL-KDD数据集用于验证所提出的模型的入侵检测性能,并将实验结果与其他现有技术进行比较,以进行整体性能验证。与那些模型相比,基于NSLKDD数据集的入侵检测结果更好,有效,因为检测率为95.80%,远远率为3.45%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号