首页> 外文期刊>Microprocessors and microsystems >Side-channel countermeasures utilizing dynamic logic reconfiguration: Protecting AES/Rijndael and Serpent encryption in hardware
【24h】

Side-channel countermeasures utilizing dynamic logic reconfiguration: Protecting AES/Rijndael and Serpent encryption in hardware

机译:使用动态逻辑重新配置的侧通道对策:保护AES / Rijndael和硬件中的蛇加密

获取原文
获取原文并翻译 | 示例
           

摘要

Dynamic logic reconfiguration is a concept that allows for efficient on-the-fly modifications of combinational circuit behavior in both ASIC and FPGA devices. The reconfiguration of Boolean functions is achieved by modification of their generators (e.g., shift register-based look-up tables) and it can be controlled from within the chip, without the necessity of any external intervention. This hardware polymorphism can be utilized for the implementation of side-channel attack countermeasures, as demonstrated by Sasdrich et al. for the lightweight cipher PRESENT.In this work, we adapt these countermeasures to two of the AES finalists, namely Rijndael and Serpent. Just like PRESENT, both Rijndael and Serpent are block ciphers based on a substitution-permutation network. We describe the countermeasures and adjustments necessary to protect these ciphers using the resources available in modern Xilinx FPGAs. We describe our implementations and evaluate the side-channel leakage and effectiveness of different countermeasures combinations using a methodology based on Welch's t-test. Furthermore, we attempt to break the protected AES/Rijndael implementation using second-order DPA/CPA attacks.We did not detect any significant first-order leakage from the fully protected versions of our implementations. Using one million power traces, we detect second-order leakage from Serpent encryption, while AES encryption second-order leakage is barely detectable. We show that the countermeasures proposed by Sasdrich et al. are, with some modifications, successfully applicable to AES and Serpent.
机译:动态逻辑重新配置是一种概念,允许在ASIC和FPGA设备中有效地进行组合电路行为的有效修改。通过修改其生成器(例如,基于移位寄存器的查找表)来实现布尔函数的重新配置,并且可以从芯片内部控制,而无需任何外部干预的必要性。该硬件多态性可用于实施侧通道攻击对策,如Sasdrich等人所示。对于当前的轻质密码。在这项工作中,我们将这些对策适应两个AES决赛选手,即Rijndael和Serpent。就像现在一样,Rijndael和Serpent都是基于替代排列网络的块密码。我们描述了使用现代Xilinx FPGA中可用的资源来保护这些密码的对策和调整。我们描述了我们的实施,并评估了基于Welch T-Test的方法的不同对策组合的侧通道泄漏和有效性。此外,我们试图使用二阶DPA / CPA攻击来打破受保护的AES / Rijndael实现。我们没有从我们实现的完全保护版本中检测到任何重要的一阶泄漏。使用一百万个电源迹线,我们检测来自蛇加密的二阶泄漏,而AES加密二阶泄漏几乎无法检测到。我们表明Sasdrich等人提出的对策。有一些修改,成功适用于AES和蛇。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号