首页> 外文期刊>Microprocessors and microsystems >Using Machine Learning for predicting area and Firmware metrics of hardware designs from abstract specifications
【24h】

Using Machine Learning for predicting area and Firmware metrics of hardware designs from abstract specifications

机译:使用机器学习根据抽象规范预测硬件设计的面积和固件指标

获取原文
获取原文并翻译 | 示例

摘要

Advancements of Machine Learning (ML) in the field of computer vision have paved the way for its potential application in many other fields. Researchers and Hardware domain experts are exploring possible applications of Machine Learning in optimizing many aspects of the Hardware development process.In this paper, we propose a novel approach for predicting area and multiple Firmware metrics of Hardware components from specifications. The flow uses an existing RTL generation framework for generating valid data samples that enable ML algorithms to train the learning models. The approach has been successfully employed to predict the area and Firmware measurements of real-life Hardware components such as Control and Status Register (CSR) interfaces, that are ubiquitous in embedded systems. With our method we are able to perform an estimation on the area of an Hardware component with more than 98% accuracy and 600x faster than the existing methods. In addition, we are able to rank the features according to their importance in final area estimations. Finally, we are as well able to predict with an accuracy of approx. 85% the size and the CPU running cycles of a Firmware program embedded on the same Hardware component. This method, as a whole, is an important approach towards an accurate and fast estimation in the context of Hardware/Software trade-off analysis. (C) 2019 Elsevier B.V. All rights reserved.
机译:机器学习(ML)在计算机视觉领域的进步为它在许多其他领域的潜在应用铺平了道路。研究人员和硬件领域专家正在探索机器学习在优化硬件开发过程的许多方面中的可能应用。在本文中,我们提出了一种从规格预测面积和多个固件指标的新颖方法。该流使用现有的RTL生成框架来生成有效的数据样本,从而使ML算法能够训练学习模型。该方法已成功用于预测嵌入式系统中无处不在的实际硬件组件(如控制和状态寄存器(CSR)接口)的面积和固件测量。使用我们的方法,我们能够对硬件组件的面积进行估算,其准确度超过98%,比现有方法快600倍。此外,我们能够根据特征在最终区域估计中的重要性对其进行排名。最后,我们还能够以大约5%的精度进行预测。嵌入在同一硬件组件上的固件程序的大小和CPU运行周期的85%。总体而言,此方法是在硬件/软件权衡分析的情况下实现准确,快速估算的重要方法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号