首页> 外文期刊>Microprocessors and microsystems >Energy-efficient scheduling on multi-FPGA reconfigurable systems
【24h】

Energy-efficient scheduling on multi-FPGA reconfigurable systems

机译:多FPGA可重配置系统上的节能调度

获取原文
获取原文并翻译 | 示例

摘要

With the growing demand in high performance computing, reconfigurable computing systems built with Field Programmable Gate Array (FPGA) have become increasingly popular for its reconfigurability and adaptability to applications. Although such systems promise high processing performance, their energy efficiency has become a critical issue. This paper studies the crucial problem of energy-efficient scheduling for reconfigurable systems with multiple FPGAs. Several factors make the energy efficient scheduling particularly challenging, including spatial allocation constraint, reconfiguration overhead, limited reconfiguration ports, and deadline satisfaction. These unique characteristics make energy efficient scheduling in multi-FPGA reconfigurable systems particularly challenging and none of existing solutions can be directly applied. This paper takes on this challenge and proposes an energy-efficient scheduling algorithm called AEE based on ant colony optimization for multi-FPGA reconfigurable systems. A task placement scheme is devised which serves as the heuristic function that derives the minimum global makespan, which is important to the ant colony algorithm based proposed in the paper. The scheme takes into account reconfiguration overhead and places tasks for reducing the overall overhead. Then, based on AEE, an enhanced algorithm (eAEE) is devised to deal with the tasks with precedence and interdependencies. To evaluate the effectiveness of the two proposed algorithms, comprehensive trace-driven simulations have been conducted and compared with other state-of-art algorithms. Experimental results demonstrate that AEE can successfully complete tasks without violating deadline constraints and the energy dissipation is largely reduced, no more than 10.65% higher than the optimum when the problem scale is relatively small. Also, eAEE consumes energy 58.17% less than an improved simulated annealing algorithm (iSA) with a large problem scale.
机译:随着高性能计算需求的增长,以现场可编程门阵列(FPGA)构建的可重构计算系统因其可重构性和对应用的适应性而变得越来越流行。尽管这样的系统具有很高的处理性能,但其能效却已成为一个关键问题。本文研究了具有多个FPGA的可重配置系统的节能调度的关键问题。几个因素使能效调度特别具有挑战性,包括空间分配约束,重新配置开销,有限的重新配置端口和截止日期满意度。这些独特的特性使多FPGA可重配置系统中的节能调度尤其具有挑战性,并且无法直接应用现有解决方案。本文克服了这一挑战,并提出了一种基于蚁群优化的节能型调度算法AEE,用于多FPGA可重配置系统。设计了一种任务分配方案,该任务分配方案可作为启发函数来推导最小全局makepan,这对本文提出的蚁群算法具有重要意义。该方案考虑了重新配置开销,并放置了用于减少总体开销的任务。然后,基于AEE,设计了一种增强算法(eAEE)来处理具有优先级和相互依赖性的任务。为了评估这两种算法的有效性,进行了全面的跟踪驱动模拟,并将其与其他最新算法进行了比较。实验结果表明,AEE可以成功完成任务而不会违反截止日期的限制,并且能耗大大降低,当问题规模相对较小时,能耗比最佳值高出不超过10.65%。而且,eAEE的能耗比具有较大问题规模的改进的模拟退火算法(iSA)少58.17%。

著录项

  • 来源
    《Microprocessors and microsystems》 |2013年第7期|590-600|共11页
  • 作者

    Chao Jing; Yanmin Zhu; Minglu Li;

  • 作者单位

    Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China;

    Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University, Shanghai, China;

    Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University, Shanghai, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Reconfigurable systems; Multi-FPGA systems; Energy optimization; Ant colony optimization; Scheduling;

    机译:可重配置系统;多FPGA系统;能源优化;蚁群优化;排程;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号