首页> 外文期刊>Microprocessors and microsystems >Scenario-based quasi-static task mapping and scheduling for temperature-efficient MPSoC design under process variation
【24h】

Scenario-based quasi-static task mapping and scheduling for temperature-efficient MPSoC design under process variation

机译:工艺变化下基于场景的准静态任务映射和调度,用于温度高效的MPSoC设计

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, employing the worst case analysis is the most common approach to provide unified static task mapping-scheduling plans on MPSoCs. Since the whole design space nor a subset of design space are not explored in the worst case methods, these approaches may fail to achieve efficient performance yield. In this paper, we present a temperature-aware quasi-static task mapping-scheduling framework under process variation for hard real-time and periodic systems on MPSoCs. By employing the stochastic optimization and scenario-based approaches, we explore a few representative scenarios in the whole design space of the chip using the probability density function of the problem random variables. Then, we obtain a compact set of near optimal mapping-scheduling of real-time tasks which targets performance-yield maximization and minimization of the expected values of peak temperature. Consequently, considering different chip parameter configurations, we construct the plan set as the solutions that attain the best variation-aware task mapping-scheduling that satisfy the deadline and minimize the temperature. This plan set can readily look up at run time by the system scheduler of the chip to find the proper plan of the tasks based on the run-time parameters. The experimental results demonstrate significant improvements in performance-yield and peak temperature for almost all of the test cases off homogenous and heterogeneous MPSoCs. (C) 2014 Elsevier B.V. All rights reserved.
机译:如今,采用最坏情况分析是在MPSoC上提供统一的静态任务映射计划计划的最常用方法。由于在最坏的情况下方法不会探索整个设计空间或设计空间的子集,因此这些方法可能无法获得有效的性能。在本文中,我们针对MPSoC上的硬实时和周期性系统,提出了一种在过程变化下温度感知的准静态任务映射-调度框架。通过采用随机优化和基于场景的方法,我们使用问题随机变量的概率密度函数在芯片的整个设计空间中探索了一些代表性场景。然后,我们获得了一组紧凑的,实时任务的最佳映射计划,其目标是使性能最大化和峰值温度预期值的最小化。因此,考虑到不同的芯片参数配置,我们构建了计划集,作为能够获得最佳的变化感知任务映射计划的解决方案,该计划可以满足最后期限并最大限度地降低温度。该计划集可以很容易地由芯片的系统调度程序在运行时查找,以根据运行时参数找到正确的任务计划。实验结果表明,对于同质和异质MPSoC的几乎所有测试用例,其性能,峰值温度和峰值温度都有显着改善。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号