首页> 外文期刊>Microprocessors and microsystems >Random access schemes for efficient FPGA SpMV acceleration
【24h】

Random access schemes for efficient FPGA SpMV acceleration

机译:随机访问方案可实现高效的FPGA SpMV加速

获取原文
获取原文并翻译 | 示例

摘要

Utilizing hardware resources efficiently is vital to building the future generation of high-performance computing systems. The sparse matrix - dense vector multiplication (SpMV) kernel, which is notorious for its poor efficiency on conventional processors, is a key component in many scientific computing applications and increasing SpMV efficiency can contribute significantly to improving overall system efficiency. The major challenge in implementing SpMV efficiently is handling the input-dependent memory access patterns, and reconfigurable logic is a strong candidate for tackling this problem via memory system customization. In this work, we consider three schemes (all off-chip, all on-chip, caching) for servicing the irregular-access component of SpMV and investigate their effects on accelerator efficiency. To combine the strengths of on-chip and off-chip random accesses, we propose a hardware-software caching scheme named NCVCS that combines software preprocessing with a nonblocking cache to enable highly efficient SpMV accelerators with modest on-chip memory requirements. Our results from the comparison of the three schemes implemented as part of an FPGA SpMV accelerator show that our scheme effectively combines the high efficiency from on-chip accesses with the capability of working with large matrices from off-chip accesses. (C) 2016 Elsevier B.V. All rights reserved.
机译:有效地利用硬件资源对于构建下一代高性能计算系统至关重要。稀疏矩阵-密集矢量乘法(SpMV)内核因其在常规处理器上的低效率而臭名昭著,是许多科学计算应用程序中的关键组件,而提高SpMV效率可以显着提高整体系统效率。有效实现SpMV的主要挑战是处理依赖于输入的内存访问模式,而可重新配置的逻辑是通过内存系统定制解决此问题的强大候选者。在这项工作中,我们考虑了三种服务于SpMV的不规则访问组件的方案(全部为片外,全部为片内,缓存),并研究了它们对加速器效率的影响。为了结合片上和片外随机访问的优势,我们提出了一种名为NCVCS的硬件-软件缓存方案,该方案将软件预处理与无阻塞缓存相结合,以实现具有适度片上存储器需求的高效SpMV加速器。通过比较作为FPGA SpMV加速器一部分实现的三种方案的结果,我们的方案有效地结合了片上访问的高效率和处理片外访问的大型矩阵的能力。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号