首页> 外文期刊>Microprocessors and microsystems >Hybrid swarm intelligent parallel algorithm research based on multi-core clusters
【24h】

Hybrid swarm intelligent parallel algorithm research based on multi-core clusters

机译:基于多核集群的混合群智能并行算法研究

获取原文
获取原文并翻译 | 示例

摘要

In order to solve poor fine searching capacity of artificial fish swarm algorithm and artificial bee colony swarm algorithm in late state to result in insufficient local optimization, hybrid swarm intelligent parallel algorithm research based on multi-core clusters is proposed; Then, reverse learning mechanism is introduced in early stage of algorithm, initialized swarms are evenly distributed, and swarms are randomly divided into two groups to make interactive learning strategy accelerates rate of convergence, and basic artificial fish swarm algorithm and artificial bee colony swarm algorithm are used to make global searching. In late stage of algorithm, niches artificial fish swarm algorithm and Random Perturbation Artificial Bee Colony are used to make local fine searching to the solution obtained in early stage; On this basis, MPI+OpenMP+STM parallel programming model based on multi-core clusters is established for parallel design and analysis. Finally, stimulation experiment indicates optimizing efficiency of this algorithm is higher than single artificial fish swarm algorithm and artificial bee colony swarm algorithm. (C) 2016 Elsevier B.V. All rights reserved.
机译:为了解决人工鱼群算法和人工蜂群算法在后期状态下精细搜索能力差,局部优化不足的问题,提出了基于多核聚类的混合群智能并行算法研究。然后,在算法的早期引入逆向学习机制,将初始化的群体均匀地分布,并将群体随机分为两组,以使交互式学习策略加快收敛速度​​,基本的人工鱼群算法和人工蜂群算法为用于进行全局搜索。在算法的后期,利用生态位人工鱼群算法和随机扰动人工蜂群对早期得到的解进行局部精细搜索。在此基础上,建立了基于多核集群的MPI + OpenMP + STM并行编程模型,用于并行设计和分析。最后,刺激实验表明,该算法的优化效率高于单个人工鱼群算法和人工蜂群算法。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Microprocessors and microsystems》 |2016年第11期|151-160|共10页
  • 作者单位

    Guangxi Teachers Educ Univ, Sci Comp & Intelligent Informat Proc GuangXi High, Nanning 530023, Guangxi, Peoples R China;

    Guangxi Teachers Educ Univ, Sci Comp & Intelligent Informat Proc GuangXi High, Nanning 530023, Guangxi, Peoples R China|Guangxi Teachers Educ Univ, Coll Comp & Informat Engn, Nanning 530023, Guangxi, Peoples R China;

    Univ N Carolina, Dept Radiol, Chapel Hill, NC USA|Univ N Carolina, BRIC, Chapel Hill, NC USA;

    Guangxi Teachers Educ Univ, Sci Comp & Intelligent Informat Proc GuangXi High, Nanning 530023, Guangxi, Peoples R China;

    Guangxi Teachers Educ Univ, Coll Comp & Informat Engn, Nanning 530023, Guangxi, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Artificial fish swarm algorithm; Artificial bee colony swarm algorithm; Optimization; Hybrid swarm intelligent algorithm; Parallel algorithm;

    机译:人工鱼群算法;人工蜂群算法;优化;混合群智能算法;并行算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号