首页> 外文期刊>Microprocessors and microsystems >Fine-grained monitoring for self-aware embedded systems
【24h】

Fine-grained monitoring for self-aware embedded systems

机译:自我意识嵌入式系统的细粒度监控

获取原文
获取原文并翻译 | 示例

摘要

Dynamic Thermal and Power Management methods highly depend on the quality of the monitoring, which needs to provide estimations of the system's state. This can be achieved with a set of performance counters that can be configured to track logical events at different levels. Although this problem has been addressed in the literature, recently developed highly reactive adaptation techniques require faster, more accurate and more robust estimations methods. A systematic approach (PESel) is proposed for the selection of the relevant performance events from the local, shared and system resources. We investigate an implementation of a neural network based estimation technique which provides better results compared to related works. Our approach is robust to external temperature variations and takes into account dynamic scaling of the operating frequency. It achieves 96% accuracy with a temporal resolution of 100 ms, with negligible performance/energy overheads (less than 1%). (C) 2016 Elsevier B.V. All rights reserved.
机译:动态热和电源管理方法在很大程度上取决于监视的质量,该监视的质量需要提供系统状态的估计。这可以通过一组性能计数器来实现,这些性能计数器可以配置为跟踪不同级别的逻辑事件。尽管在文献中已经解决了这个问题,但是最近开发的高反应性自适应技术需要更快,更准确和更可靠的估计方法。提出了一种系统方法(PESel),用于从本地,共享和系统资源中选择相关的性能事件。我们研究了基于神经网络的估计技术的实现,与相关工作相比,该技术可提供更好的结果。我们的方法对外部温度变化具有鲁棒性,并考虑了工作频率的动态缩放。它的时间分辨率为100毫秒,可实现96%的精度,而性能/能源开销可忽略不计(不到1%)。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号