...
首页> 外文期刊>Microgravity science and technology >Experimental Study of the Convective Motions by the PIV Technique within an Evaporating Liquid Layer into the Gas Flow
【24h】

Experimental Study of the Convective Motions by the PIV Technique within an Evaporating Liquid Layer into the Gas Flow

机译:将PIV技术在蒸发液层内的对流运动的实验研究进入气流

获取原文
获取原文并翻译 | 示例
           

摘要

We present the experimental study of convection in a horizontal liquid layer (ethanol, 3-mm deep), evaporating from a localized surface (10 × 10 mm~2) into the gas flow (air). Visualization and measurements of the two-component velocity field in the liquid layer has been carried out with the Particle Image Velocimetry (PIV) technique. In our experiments we consider a novel configuration in which the gas-liquid interface is maintained in the flat position in the confined square area and the volatile liquid evaporates from the planar surface into the gas flowing along the surface. We also consider the effect of the gas velocity (0.0138-0.138 m/s) and the gas and the liquid temperature (20 °C - 50 °C) on the convective flow structure within the liquid layer. It is shown that the gas velocity and both, the gas and the liquid temperatures induce significant changes in the convective flow structure. We give the first experimental proof of the phenomenon that the motion of the gas-liquid interface goes along the counter-current direction to the gas flow as theoretically predicted. The analysis of the experimental data shows that the influence of the gas flow velocity on the Marangoni convection at the maximum temperature (50 °C) is significantly reduced owing to the growth of the diffusion resistance for the gas flow under a strong evaporation from the interface. As a result, it leads to the low surface temperature gradient, which decreases thermocapillary stresses and the circulation velocity of the first (thermocapillary) vortex within the fluid layer. Further, we observe that the disappearance of the second convective vortex circulating in the same direction with the gas flow. The governing factor, determining the structure of convective flows within the liquid is the thermocapillary effect due to the intensive evaporation provided that the cooling and the temperature distribution are uniform on the gas-liquid interface.
机译:我们介绍了水平液体层(乙醇,3mm深)中对流的实验研究,从局部表面(10×10mm〜2)蒸发到气流(空气)中。液体层中的双分量速度场的可视化和测量已经采用粒子图像速度(PIV)技术进行。在我们的实验中,我们考虑一种新颖的配置,其中气液界面保持在限制方形区域的平坦位置,并且挥发性液体从平面表面蒸发到沿着表面流动的气体中。我们还考虑气体速度(0.0138-0.138 m / s)和气体和液体温度(20℃-50°C)对液体层内的对流流动结构的影响。结果表明,气体速度和两者,气体和液体温度诱导对流流动结构的显着变化。我们给出了这种现象的第一个实验证据,即气液界面的运动沿着根据理论上预测的气流的逆流方向。实验数据的分析表明,由于在界面的强烈蒸发下,由于气流的扩散阻力的增长,因此在最高温度(50℃)下的Marangoni对流对Marangoni对流对Marangoni对流的影响显着降低。结果,它导致低表面温度梯度,其降低了流体层内的热量应力和第一(热毛细管)涡流的循环速度。此外,我们观察到第二对流涡流的消失在与气流相同的方向上循环。控制液体内的对流流动结构的控制因素是由于压力蒸发而导致的热量施工,条件是在气液界面上是均匀的冷却和温度分布。

著录项

  • 来源
    《Microgravity science and technology》 |2020年第2期|203-216|共14页
  • 作者单位

    Center for Energy Science and Technology Skolkovo Institute of Science and Technology 3 Nobel Street Skolkovo Moscow 121205 Russia Kutateladze Institute of Thermophysics Siberian Branch Russian Academy of Sciences Lavrentiev ave. 1 Novosibirsk 630090 Russia;

    Kutateladze Institute of Thermophysics Siberian Branch Russian Academy of Sciences Lavrentiev ave. 1 Novosibirsk 630090 Russia;

    Center for Energy Science and Technology Skolkovo Institute of Science and Technology 3 Nobel Street Skolkovo Moscow 121205 Russia;

    Kutateladze Institute of Thermophysics Siberian Branch Russian Academy of Sciences Lavrentiev ave. 1 Novosibirsk 630090 Russia Novosibirsk State University Pirogov st. 2 Novosibirsk 630090 Russia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Evaporation; Shear flow; Convection; Liquid layer; Experiment; PIV technique;

    机译:蒸发;剪切流动;对流;液体层;实验;PIV技术;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号