首页> 外文期刊>Microfluidics and nanofluidics >Inverse design of microfluidic concentration gradient generator using deep learning and physics-based component model
【24h】

Inverse design of microfluidic concentration gradient generator using deep learning and physics-based component model

机译:基于深层学习和物理组件模型的微流体浓度梯度发生器的逆设计

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper presents a new paradigm of deep neural network (DNN) for the inverse design of microfluidic concentration gradi-ent generators (μCGGs) with complex network topology. In this method, a concentration gradient (CG) and design parameters yielding the CG are, respectively, used as inputs and outputs of DNN, and the relationship between them is mapped. Several new elements are also proposed, including utilization of fast-running physics-based component model in the closed form to generate a large amount of data for DNN learning which otherwise is not available through computationally demanding computational fluid dynamics (CFD) simulation; and a divide-and-conquer strategy and DNN formulation combining clas-sification and regression to mitigate many-to-one design complications for enhanced accuracy. Several DNN structures are investigated and developed, including single fully connected neural network (FCNN), convolutional neural network, and a new cascade FCNN for a divide-and-conquer implementation. Case studies are performed on a triple-Y μCGG to evaluate design performance of the proposed method in a six-dimensional space that only includes sample concentrations at inlet reservoirs as design parameters, and in a nine-dimensional design space, to which inlet flow pressures are also added. It is verified in high-fidelity CFD simulation that widely used CGs can be produced using DNN-predicted design parameters accurately with average error <4% and < 8.5% relative to the prescribed CGs, respectively, in the six- and nine-dimensional design space. The learned design rules are packaged into the DNN model that allows to generate accurate μCGGs designs instantaneously (~3 ms) and eliminates requirements of simulation and optimization knowledge, facilitating distribution of the design capabilities to microfluidic end users.
机译:本文提出了一种新的神经网络(DNN)的新范式,用于具有复杂网络拓扑的微流体浓度GROT-ENT发生器(μcggs)的逆设计。在该方法中,浓度梯度(CG)和产生CG的设计参数分别用作DNN的输入和输出,并且它们之间的关系被映射。还提出了几种新的元素,包括利用封闭形式的快速运行物理基组件模型,以生成DNN学习的大量数据,否则通过计算要求苛刻的计算流体动力学(CFD)仿真。和剥夺策略和DNN配方组合Clas-yification和回归以减轻多对一设计并发症以提高准确性。研究和开发了几种DNN结构,包括单个完全连接的神经网络(FCNN),卷积神经网络以及用于分行和征服实施的新级联FCNN。在Triple-yμcgg上进行案例研究,以评估所提出的方法在六维空间中的设计性能,该方法仅包括入口储存器的样本浓度作为设计参数,并且在九维设计空间中,进气流压力还添加了。它在高保真CFD模拟中验证,可以使用DNN预测的设计参数来生产广泛使用的CG,分别在六和九维设计中,平均误差分别具有相对于规定的CGS的平均误差<4%和<8.5%空间。学习的设计规则包装到DNN模型中,允许瞬间产生精确的μCGGS(〜3毫秒),并消除了模拟和优化知识的要求,促进了微流体最终用户的设计能力的分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号