首页> 外文学位 >Fabrication of RGD peptide gradient poly(ethylene glycol) (PEG) hydrogel in microfluidic gradient generators to control mesenchymal stem cell behaviour.
【24h】

Fabrication of RGD peptide gradient poly(ethylene glycol) (PEG) hydrogel in microfluidic gradient generators to control mesenchymal stem cell behaviour.

机译:在微流控梯度发生器中制备RGD肽梯度聚乙二醇水凝胶,以控制间充质干细胞的行为。

获取原文
获取原文并翻译 | 示例

摘要

In the design of biomaterial interfaces to control cell response, efforts have focused on tuning surface chemistry to control the concentration or gradient of biochemical agents. The microfluidic methods have been used to precisely control the gradient profiles to study the different kinds of cells response. However, few studies have been explored for the Mesenchymal Stem Cell (MSC) response to small biomolecules concentration using the microfluidic gradient methods, especially in a 3D environment. MSCs have the potential use for tissue regeneration in three-dimensional (3D) scaffold through the control and guidance of MSCs differentiation. The purpose of this project is to fabricate the poly (ethylene glycol) (PEG) hydrogel with gradient distribution of Arg-Gly-Asp (RGD) peptide using the microfluidic gradient generator to study Rat MSC adhesion on the surface of 2D PEG hydrogel and cell viability in 3D environment by cell encapsulation.;The microfluidic gradient generator was fabricated using photolithography and soft lithography technique. Colour solution was used to test the formation of gradient in the generator. PEG hydrogel with RGD gradient was then fabricated in the microfluidic device under UV light irradiation. Rat MSC was cultured on the 2D RGD gradient PEG hydrogel. Actin and nucleus staining were done to observe cell adhesion and spreading. MSC was also 3D encapsulated into the RGD gradient PEG hydrogel under UV light. The cells viability was characterized by live/dead assay. The encapsulated cells were induced to osteogenic differentiation.;Theoretical simulation and colour solution testing show that chemical gradient can be successfully generated in the microfluidic device. MSC cultured on 2D RGD gradient PEG hydrogel had a gradient distribution that cell adhesion density and covering area increased with the increase of RGD concentration. The viability for 3D encapsulation also increased with the increase of RGD concentration. Characterization of osteogenic differentiation in the RGD gradient hydrogel was also done and results indicated that RGD can promote the osteogenic differentiation.
机译:在控制细胞反应的生物材料界面的设计中,努力集中在调整表面化学以控制生化试剂的浓度或梯度。微流体方法已用于精确控制梯度分布,以研究不同种类的细胞反应。然而,很少有研究使用微流体梯度法研究间充质干细胞(MSC)对小生物分子浓度的反应,尤其是在3D环境中。通过控制和指导MSC分化,MSC在三维(3D)支架中具有组织再生的潜在用途。该项目的目的是使用微流梯度发生器制造具有Arg-Gly-Asp(RGD)肽梯度分布的聚乙二醇(PEG)水凝胶,以研究大鼠MSC在2D PEG水凝胶和细胞表面的粘附通过细胞包封在3D环境中保持活力。;微光刻梯度发生器是使用光刻和软光刻技术制造的。使用彩色溶液测试发生器中梯度的形成。然后在紫外光照射下在微流体装置中制备具有RGD梯度的PEG水凝胶。大鼠MSC在2D RGD梯度PEG水凝胶上培养。进行肌动蛋白和细胞核染色以观察细胞粘附和扩散。在紫外光下,MSC也被3D封装到RGD梯度PEG水凝胶中。通过活/死测定来表征细胞活力。理论研究和色溶液试验表明,在微流控装置中可以成功产生化学梯度。在二维RGD梯度PEG水凝胶上培养的MSC具有梯度分布,细胞粘附密度和覆盖面积随RGD浓度的增加而增加。 3D封装的可行性也随RGD浓度的增加而增加。还对RGD梯度水凝胶进行了成骨分化的表征,结果表明RGD可以促进成骨分化。

著录项

  • 作者

    Liu, Zongbin.;

  • 作者单位

    Hong Kong Polytechnic University (Hong Kong).;

  • 授予单位 Hong Kong Polytechnic University (Hong Kong).;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:34

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号