...
首页> 外文期刊>Microelectronics & Reliability >Gaussian process regression approach for robust design and yield enhancement of self-assembled nanostructures
【24h】

Gaussian process regression approach for robust design and yield enhancement of self-assembled nanostructures

机译:高斯过程回归方法,用于自组装纳米结构的稳健设计和良率提高

获取原文
获取原文并翻译 | 示例
           

摘要

Self-assembled nanostructures are increasingly used for nanoelectronic and optoelectronic applications due to their high surface area to volume ratio and their ability to break traditional lithography limits. However, they suffer due to poor yield and repeatability as the growth process is often not well studied or optimized. Gaussian process regression (GPR) is a machine learning technique that can be used for both regression and classification purpose. In the GPR framework, a probability measure is defined according to one prior belief about the response surface and the Bayesian rule is applied to combine the observations with prior beliefs to form a posterior distribution of the response surface, which is known as the “surrogate model”. We propose here the use of GPR as an effective statistical tool to optimize the growth conditions of nanostructures so as to improve their yield, controllability and repeatability ensuring at the same time that the yield is not affected by process variations at the identified optimum process conditions. In effect, we are proposing a design for reliability and robust design strategy for optimization of self-assembled nanostructure growth. We present here a case study of cadmium selenide nanostructures making use of an extensive design of experiment result (available open source) to illustrate the proposed methodology. The prediction accuracy of GPR is compared with two other commonly used statistical models → binomial and multinomial logistic regression. The use of the GPR method resulted in much better accuracy of probabilistic prediction of the different nanostructures with fewer fitting parameters than the logistic regression method.
机译:自组装纳米结构因其高的表面积与体积之比以及突破传统光刻限制的能力而越来越多地用于纳米电子和光电应用。但是,由于生长过程常常没有得到很好的研究或优化,它们的产量和可重复性很差。高斯过程回归(GPR)是一种可用于回归和分类目的的机器学习技术。在GPR框架中,根据关于响应面的一个先验信念定义了一种概率测度,然后应用贝叶斯规则将观测值与先验信念相结合以形成响应面的后验分布,这被称为“替代模型” ”。我们在这里提出使用GPR作为有效的统计工具来优化纳米结构的生长条件,从而提高其产量,可控制性和可重复性,同时确保在确定的最佳工艺条件下,产量不受工艺变化的影响。实际上,我们提出了可靠性设计和稳健的设计策略,以优化自组装纳米结构的生长。我们在这里提供硒化镉纳米结构的案例研究,利用广泛的实验结果设计(可用的开放源代码)来说明所提出的方法。将GPR的预测准确性与其他两个常用统计模型→二项式和多项式Lo​​gistic回归进行比较。与Logistic回归方法相比,GPR方法的使用具有更少的拟合参数,因此可以更好地预测不同纳米结构的概率,其准确性更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号