首页> 外文OA文献 >A blackbox yield estimation workflow with Gaussian process regression applied to the design of electromagnetic devices
【2h】

A blackbox yield estimation workflow with Gaussian process regression applied to the design of electromagnetic devices

机译:BlackBox产量估计工作流程,具有高斯过程回归应用于电磁器件的设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract In this paper an efficient and reliable method for stochastic yield estimation is presented. Since one main challenge of uncertainty quantification is the computational feasibility, we propose a hybrid approach where most of the Monte Carlo sample points are evaluated with a surrogate model, and only a few sample points are reevaluated with the original high fidelity model. Gaussian process regression is a non-intrusive method which is used to build the surrogate model. Without many prerequisites, this gives us not only an approximation of the function value, but also an error indicator that we can use to decide whether a sample point should be reevaluated or not. For two benchmark problems, a dielectrical waveguide and a lowpass filter, the proposed methods outperform classic approaches.
机译:摘要本文提出了一种有效且可靠的随机产量估计方法。由于不确定量化的一个主要挑战是计算可行性,我们提出了一种混合方法,其中大多数蒙特卡罗样本点用替代模型评估,并且只有几个样本点与原始高保真模型重新评估。高斯进程回归是一种非侵入式方法,用于构建代理模型。如果没有许多先决条件,这不仅为我们提供了函数值的近似,而且给出了一个错误指示器,我们可以用来决定是否应该重新评估样本点。对于两个基准问题,所提出的方法优于经典的方法,介电波导和低通滤波器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号