...
首页> 外文期刊>Microelectronic Engineering >Effect of ultra-fast laser texturing on surface wettability of microfluidic channels
【24h】

Effect of ultra-fast laser texturing on surface wettability of microfluidic channels

机译:超快速激光织构化对微流道表面润湿性的影响

获取原文
获取原文并翻译 | 示例

摘要

Microfluidic techniques have been recently an emerging field that has given rise to a large number of scientific and technological developments. To determine which liquid phase is dispersed, the surface wettability of nearby microfluidic-channel walls is critically significant to the process. The aim of this study is to present the surface texturing and further effect on surface wettability of microfluidic channels by an ultra-fast laser irradiation. The laser used here is through combination of all-in-one femtosecond regenerative amplifier and galvo-scanner systems. The amplifier is employed by an Ytterbium-ion-based gain media in which output beam has the specifications of a center wavelength of 1035 nm, a repetition rate of 100 kHz and a pulse duration of 350 fs. While the laser power is 500 mW at the scanning speed of 100 mm/s, the depth and width of microfluidic Y-channel composed of multi-pass channel are 2.58 μm and 100 μm, respectively. The experimental results of contact angle on laser ablation surface show the influences on inner wall surfaces of microfluidic channels in the ultra-fast laser process. Finally, this study demonstrates the feasibility of fabricating super-hydropliilic surface of microfluidic channels with 500 nm pitch by direct ultra-fast laser process without conventional solution coating, plasma treatment or other surface modification procedures.
机译:微流体技术近来已经成为新兴领域,其引起了大量科学和技术发展。为了确定分散哪个液相,附近的微流体通道壁的表面润湿性对该过程至关重要。这项研究的目的是通过超快速激光辐照,介绍表面纹理化以及对微流体通道表面润湿性的进一步影响。这里使用的激光是通过将飞秒再生放大器和振镜扫描仪系统结合在一起而实现的。该放大器由基于Y离子的增益介质使用,其中输出光束的规格为中心波长为1035 nm,重复频率为100 kHz,脉冲持续时间为350 fs。在100 mm / s的扫描速度下,激光功率为500 mW时,由多通道通道组成的微流体Y通道的深度和宽度分别为2.58μm和100μm。激光烧蚀表面接触角的实验结果表明,超快激光工艺对微流道内壁表面的影响。最后,这项研究证明了通过直接超快激光工艺无需常规溶液涂覆,等离子处理或其他表面改性程序即可制造间距为500 nm的微流体通道超亲水表面的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号