...
首页> 外文期刊>Microelectronic Engineering >Simulation and experimental investigation of a novel electrostatic microgripper system
【24h】

Simulation and experimental investigation of a novel electrostatic microgripper system

机译:新型静电微抓钳系统的仿真与实验研究

获取原文
获取原文并翻译 | 示例

摘要

Microgrippers are amongst the preferred tools for microassembly applications and have drawn extensive attention of the researches on their mechanism and actuation principles. One of key parameters is efficiency of microgripping systems in handling more than one part at a time. Multipart-gripping mechanism is one of the least investigated subjects in the published literature. In this paper, an electrostatic microgripping system using comb drive mechanism is designed with the capability of gripping two micro components simultaneously. S-type springs are utilized to amplify the displacement range of microgripper arms. The objects gripped with this microgripping system are diverse from biomedical (e.g. arrow shaped microshuttles); MEMS and microelectronic field with the dimensions from 145 to 100 μm for the operating voltage of 20-80 V. A mathematical model with derived formulas is developed showing displacement of the tool versus applied voltage. Estimation of the performance of comb-drive is done through considering five capacitors all around a comb finger. The designed model predicts the displacement of the rotor more accurately compared to dominant method of calculating the equivalent capacity of only two lateral capacitors. Furthermore a multi-field simulation of the electrostatic comb finger of the comb drive is performed using finite element method. The FEA results show good agreement with the prediction obtained from analytical model. Microgripper function is enhanced through introducing a suspension system with optimum stiffness values. It helps the microgripper work under lower levels of actuating voltage. Finally, to verify analytical results, the microgripper is fabricated and the displacements are measured that compare well with analytical results and numerical simulation.
机译:微型夹具是用于微型装配应用的首选工具,并且引起了人们对其机制和致动原理的研究的广泛关注。关键参数之一是微抓取系统一次处理多个零件的效率。多部分抓取机制是已公开文献中研究最少的主题之一。在本文中,设计了一种使用梳齿驱动机构的静电微抓取系统,该系统具有同时抓取两个微型组件的能力。 S型弹簧用于放大微爪臂的位移范围。用这种微抓握系统抓取的物体与生物医学不同(例如,箭头形的微梭);在20-80 V的工作电压下,MEMS和微电子领域的尺寸为145至100μm。建立了带有推导公式的数学模型,显示了工具相对于施加电压的位移。梳齿驱动性能的评估是通过在梳齿周围考虑五个电容器来完成的。与仅计算两个侧向电容器等效容量的主要方法相比,所设计的模型可以更准确地预测转子的位移。此外,使用有限元方法对梳齿驱动器的静电梳齿进行了多场模拟。 FEA结果与分析模型的预测结果吻合良好。通过引入具有最佳刚度值的悬架系统,微抓钳功能得以增强。它有助于微型夹具在较低的启动电压下工作。最后,为了验证分析结果,制造了微型夹具,并测量了位移,该位移与分析结果和数值模拟比较良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号