...
首页> 外文期刊>Journal of Microelectromechanical Systems >Wafer-Level Vacuum Packaging Enabled by Plastic Deformation and Low-Temperature Welding of Copper Sealing Rings With a Small Footprint
【24h】

Wafer-Level Vacuum Packaging Enabled by Plastic Deformation and Low-Temperature Welding of Copper Sealing Rings With a Small Footprint

机译:通过小尺寸的铜密封圈的塑性变形和低温焊接实现晶圆级真空包装

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Wafer-level vacuum packaging is vital in the fabrication of many microelectromechanical systems (MEMS) devices and enables significant cost reduction in high-volume MEMS production. In this paper, we propose a low-temperature wafer-level vacuum packaging method based on plastic deformation and low-temperature welding of copper sealing rings with a small footprint. A device wafer with copper ring structures and a cap wafer with corresponding metalized grooves are placed inside a vacuum chamber and pressed together at a temperature of 250 ̊C, resulting in low-temperature welding of the copper, and thus, hermetic sealing of the cavities enclosed by the sealing rings. The vacuum pressure inside the fabricated cavities 146 days after bonding was measured using residual gas analysis to be as low as 2.6×10-2 mbar. Based on this value, the leak rate is calculated to be smaller than 3.6×10-16 mbarL/s using the most conservative assumptions, demonstrating the excellent hermeticity of the seals. Shear testing was used to demonstrate that the seals are mechanically stable with over 90 MPa in shear strength for 5.2 μmhigh Cu sealing rings with widths down to 8 μm. The reported method is potentially compatible with complementary metaloxide-semiconductor (CMOS) substrates and may be applied to vacuum packaging of 3-D heterogeneously integrated MEMS on state-of-the-art CMOS substrates.
机译:晶圆级真空封装在许多微机电系统(MEMS)器件的制造中至关重要,并且可以大幅度降低MEMS生产的成本。在本文中,我们提出了一种基于塑性变形和低温焊接的小面积铜密封环的低温晶圆级真空包装方法。将具有铜环结构的器件晶圆和具有相应金属化凹槽的帽晶圆置于真空室内,并在250°C的温度下压在一起,从而实现铜的低温焊接,从而对所封闭的空腔进行气密密封通过密封圈。使用残留气体分析法,在粘合后146天后,所制造腔体内的真空压力低至2.6×10-2 mbar。基于该值,使用最保守的假设可将泄漏率计算为小于3.6×10-16 mbarL / s,这证明了密封件的出色气密性。剪切测试用于证明密封件在5.2μm高的宽至8μm的Cu密封环的剪切强度超过90 MPa时具有机械稳定性。所报道的方法可能与互补金属氧化物半导体(CMOS)基板兼容,并且可以应用于在最新CMOS基板上的3D异质集成MEMS的真空包装。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号