...
首页> 外文期刊>Journal of Microelectromechanical Systems >Fast Selective Sensing of Nitrogen-Based Gases Utilizing δ-MnO2-Epitaxial Graphene-Silicon Carbide Heterostructures for Room Temperature Gas Sensing
【24h】

Fast Selective Sensing of Nitrogen-Based Gases Utilizing δ-MnO2-Epitaxial Graphene-Silicon Carbide Heterostructures for Room Temperature Gas Sensing

机译:利用δ-mNO2外延石墨烯 - 碳化硅异质结构进行室温气体传感的快速选择性感测

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Real-time toxic gas mapping in complex urban environments have become increasingly possible with improvements in data analysis and network infrastructures. Hindering this is the cost and operation requirements of commercial gas sensors, requiring sensors with high sensitivity and selectivity that are robust and capable of operating at room temperature. Transition metal oxide-based sensors are of historical significance in the production of commercial gas sensors due to their low cost and high selectivity to target gases. The low inherent conductivity of metal oxides, however, requires operating temperatures higher than 150 degrees C, limiting their operation to controlled environments. To overcome this limitation, heterostructures have been formed between graphene and transition metal oxides, seeking to couple the conductivity of graphene with the reactivity of transition metal oxides. Among these transition metal oxides, manganese dioxide exhibits unique properties that can be leveraged to improve gas sensing. Its wide variety of synthesized structural polymorphs (1 x 1 tunnel (beta), 1 x 2 tunnel (alpha), spinel (gamma), and layered (delta)) allow for control over the available reactive surface area to enhance gas response. By utilizing defect rich delta-phase, the reactivity of the material can be improved. Here we present a delta-MnO2/epitaxial graphene/silicon carbide heterostructure for use as a room temperature gas sensor. We confirm the composition through Raman spectroscopy and surface morphology through scanning electron microscopy and atomic force microscopy. We then demonstrate its room-temperature detection by testing against NO2, NH3, IPA, and CH3OH at room temperature. [2020-0144]
机译:随着数据分析和网络基础设施的改进,复杂城市环境中的实时有毒气体映射已经越来越多。阻碍这是商业气体传感器的成本和操作要求,需要具有高灵敏度和选择性的传感器,其具有稳健,并且能够在室温下运行。由于其对目标气体的低成本和高选择性,过渡金属氧化物的传感器在商用气体传感器的生产中具有历史意义。然而,金属氧化物的低固有电导率需要高于150摄氏度的操作温度,将其操作限制在受控环境中。为了克服这种限制,在石墨烯和过渡金属氧化物之间形成异质结构,寻求将石墨烯的电导率与过渡金属氧化物的反应性耦合。在这些过渡金属氧化物中,二氧化锰表现出独特的性质,可以利用以改善气体感测。其各种合成结构多晶型物(1×1隧道(β),1×2隧道(α),尖晶石(γ)和分层(δ))允许控制可用的反应性表面积以增强气体反应。通过利用缺陷富δ相,可以提高材料的反应性。在这里,我们提出了一种Δ-mnO2 /外延石墨烯/碳化碳异质结构,用作室温气体传感器。通过扫描电子显微镜和原子力显微镜,通过拉曼光谱和表面形态来确认组合物。然后,我们通过在室温下测试NO2,NH3,IPA和CH 3 OH来证明其室温检测。 [2020-0144]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号