首页> 外文期刊>Memetic Computing >An improvement of chaos-based hash function in cryptanalysis approach: An experience with chaotic neural networks and semi-collision attack
【24h】

An improvement of chaos-based hash function in cryptanalysis approach: An experience with chaotic neural networks and semi-collision attack

机译:密码分析方法中基于混沌的哈希函数的改进:混沌神经网络和半冲突攻击的经验

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the chaos-based hash function is analyzed, then an improved version of chaos-based hash function is presented and discussed using chaotic neural networks. It is based on the piecewise linear chaotic map that is used as a transfer function in the input and output of the neural network layer. The security of the improved hash function is also discussed and a novel type of collision resistant hash function called semi-collision attack is proposed, which is based on the collision percentage between the two hash values. In the proposed attack particle swarm optimization algorithm is used to define the fitness function parameters. Finally, numerical and simulation results provides strong collision resistance and high performance efficiency.
机译:本文分析了基于混沌的哈希函数,然后使用混沌神经网络提出并讨论了基于混沌的哈希函数的改进版本。它基于分段线性混沌映射,该映射在神经网络层的输入和输出中用作传递函数。还讨论了改进的哈希函数的安全性,并基于两个哈希值之间的冲突百分比,提出了一种称为半冲突攻击的新型抗冲突哈希函数。在所提出的攻击中,粒子群优化算法用于定义适应度函数参数。最后,数值和仿真结果提供了强大的抗碰撞能力和高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号