首页> 外文期刊>Mechanics of Time-Dependent Materials >A semi-analytical integration method for the numerical simulation of nonlinear visco-elasto-plastic materials
【24h】

A semi-analytical integration method for the numerical simulation of nonlinear visco-elasto-plastic materials

机译:非线性粘弹塑性材料数值模拟的半解析积分方法

获取原文
获取原文并翻译 | 示例
           

摘要

A semi-analytic integration method is proposed, which can be used in numerical simulation of the mechanical behavior of nonlinear viscoelastic and viscoplastic materials with arbitrary stress nonlinearity. The method is based upon the formalism of Prony series expansion of the creep response function and accepts arbitrary stress protocols as input data. An iterative inversion technique is presented, which allows for application of the method in routines that provide strain and require stress as output. The advantage with respect to standard numerical integration methods such as the Runge-Kutta method is that it remains numerically stable even for integration over very long time steps during which strain may change considerably due to creep or recovery effects. The method is particularly suited for materials, whose viscoelastic and viscoplastic processes cover a very wide range of retardation times. In the case of simulation protocols with phases of slowly varying stress, computation time is significantly reduced compared to the standard integration methods of commercial finite element codes. An example is given that shows how the method can be used in three dimensional (3D) constitutive equations. Implemented into a Finite Element (FE) code, the method significantly improves convergence of the implicit time integration, allowing longer time increments and reducing drastically computing time. This is shown in the case of a single element exposed to a creep and recovery cycle. Some simulations of non-homogeneous boundary value problems are shown in order to illustrate the applicability of the method in 3D FE modeling.
机译:提出了一种半解析积分方法,可用于任意应力非线性的非线性粘弹性和粘塑性材料力学行为的数值模拟。该方法基于蠕变响应函数的Prony级数展开式,并接受任意应力协议作为输入数据。提出了一种迭代反演技术,该技术可将该方法应用于提供应变并需要应力作为输出的例程中。相对于标准数字积分方法(例如Runge-Kutta方法)的优势在于,即使在很长的时间步长积分期间,由于蠕变或恢复效应,应变可能会发生很大变化,它仍保持数值稳定。该方法特别适用于其粘弹性和粘塑性过程覆盖很宽范围的延迟时间的材料。在仿真协议的应力缓慢变化的阶段中,与商业有限元代码的标准集成方法相比,计算时间显着减少。给出了一个示例,显示了如何在三维(3D)本构方程中使用该方法。实施为有限元(FE)代码后,该方法显着提高了隐式时间积分的收敛性,从而允许更长的时间增量并大大减少了计算时间。这在单个元素处于蠕变和恢复周期的情况下显示。为了说明该方法在3D FE建模中的适用性,显示了一些非均匀边值问题的仿真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号