首页> 外文期刊>Mechanics of materials >Mechanics in naturally compliant structures
【24h】

Mechanics in naturally compliant structures

机译:自然顺应性结构中的力学

获取原文
获取原文并翻译 | 示例
       

摘要

In this study the mechanics of compliant structures (very light weight structures which do not have bending capability but have axial stiffness (tension)) in particular to spider web has been studied. The orb-web spider has evolved over the last 180 million years [Lin, L.H., Edmonds, D.T., Vollrath, F., 1995. Structural engineering of an orb-spider's web. Nature 373, 146-148]. This long period of evolution has produced the present spider web, an elegant, natural, lightweight structure to efficiently resist different loads such as wind, insect impact, etc. It can function as a net for catching prey even if any element is broken. Nature has accomplished these tasks by optimizing its form of construction, and by making spider silk a biopolymer with superior elasticity and tensile strength. It is believed that spider webs are the most efficient structures engineered by nature. In this study it is tried to find why spider webs are so efficient. A FE model of an ideal spider web has been created using the FEMAP pre- and post-processing software, and analyzed using the ABAQUS non-linear FE code. Both the static and dynamic problems have been considered, and also the numerical and experimental techniques have been used. It has been tried to look at how stress is redistributed in the face of damage and how the loss of elements affects the dynamic response of the web and how the vibration due to insect impact is damp out. Finally the numerical simulations have been compared to physical experiments. In lieu of actual spider webs, artificial nets have been examined and its 1st natural frequencies for different cases have been measured by laser vibrometer. A FE model of the net has also been created in FEMAP and analyzed by ABAQUS. In both analyses, the same elements have been removed systematically from the center and the 1st natural frequencies have been determined. Prediction matches well with experiment. The results of this study may be used in light structures like cable-stayed bridges [Masura, M., Yokoyama, K., Toshio, M., 1989. Wind-induced cable vibration of cable-stayed bridges in Japan. In: Proceedings of Canada-Japan Workshop on Bridge Aerodynamics, Ottawa, pp. 101-110; Yoshimura, T., Inoue, A., Kaji, K.K., Savage, M.S., 1989. A study on the aerodynamic stability of the Aratsu Bridge. In: Proceedings of Canada-Japan Workshop on Bridge Aerodynamics, Ottawa, pp. 41-50] and space structures.
机译:在这项研究中,已经研究了柔顺结构(非常轻的结构,不具有弯曲能力,但具有轴向刚度(张力)),特别是蜘蛛网的力学。球形蜘蛛网在过去的1.8亿年中得到了发展[Lin,L.H.,Edmonds,D.T.,Vollrath,F.,1995。球形蜘蛛网的结构工程。 Nature 373,146-148]。经过漫长的发展,目前的蜘蛛网已经成为一种优雅,自然,轻巧的结构,可以有效抵抗风,昆虫撞击等各种载荷。即使任何元素被破坏,它也可以用作捕获猎物的网。大自然通过优化结构形式以及使蜘蛛丝成为具有出色弹性和拉伸强度的生物聚合物来完成这些任务。人们相信蜘蛛网是自然界最有效的结构。在这项研究中,试图找出蜘蛛网为何如此有效。使用FEMAP预处理和后处理软件已经创建了理想蜘蛛网的FE模型,并使用ABAQUS非线性FE代码进行了分析。已经考虑了静态和动态问题,并且还使用了数值和实验技术。已经尝试着研究如何在损坏时重新分配应力,以及元件的损失如何影响纤维网的动态响应,以及如何消除由昆虫撞击引起的振动。最后,将数值模拟与物理实验进行了比较。代替实际的蜘蛛网,已经检查了人造网,并通过激光振动计测量了其在不同情况下的第一固有频率。在FEMAP中还创建了网络的有限元模型,并通过ABAQUS进行了分析。在这两次分析中,已从中心系统地删除了相同的元素,并确定了第一自然频率。预测与实验非常吻合。这项研究的结果可用于轻型结构,例如斜拉桥[Masura,M.,Yokoyama,K.,Toshio,M.,1989。风斜拉桥在日本引起的电缆振动。见:加拿大-日本桥梁空气动力学研讨会论文集,渥太华,第101-110页;吉村,井上,A.,Kaji,K.K,萨维奇,麻省,1989年。对Aratsu桥的空气动力学稳定性的研究。见:加拿大-日本桥梁空气动力学研讨会论文集,渥太华,第41-50页]和空间结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号