首页> 外文期刊>Mechanics of Advanced Materials and Structures >Two-Dimensional Solution for Coupled Thermoelasticity of Functionally Graded Beams Using Semi-Analytical Finite Element Method
【24h】

Two-Dimensional Solution for Coupled Thermoelasticity of Functionally Graded Beams Using Semi-Analytical Finite Element Method

机译:半解析有限元法求解功能梯度梁热弹性耦合问题的二维解

获取原文
获取原文并翻译 | 示例

摘要

This article presents the two-dimensional solution for a simply supported beam made of functionally graded material (FGM) subjected to arbitrary time-dependent lateral thermal shock loads by the semi-analytical finite element method. The method of finite Fourier series is combined with the Galerkin finite element method to solve the two-dimensional coupled thermoelasticity equations. The series solution is assumed along the length of the beam and finite element procedure is adopted across the thickness of the beam such that the two-dimensional character of the solution is preserved. The FGM beam is assumed to be graded across the thickness direction. The material properties across the thickness direction follow the volume fraction of the constitutive materials in power law form. The equation of motion and the conventional coupled energy equation are simultaneously solved to obtain the displacement components and temperature distribution in the beam. The C 1-continuous shape functions are used in the Galerkin finite element method. The Laplace transform technique is used to transform the governing equations into the space domain, where the Galerkin finite element is employed to obtain the solution in the space domain. The inverse of the Laplace transform is performed numerically to obtain the final solution in the real time domain. Finally, the results are validated with the known data reported in the literature.
机译:本文通过半解析有限元方法,对功能梯度材料(FGM)制成的简支梁进行了二维求解,该梁受到任意随时间变化的横向热冲击载荷。有限傅里叶级数方法与Galerkin有限元方法相结合来求解二维耦合的热弹性方程。假定沿着梁的长度进行级数解,并在梁的整个厚度上采用有限元程序,从而保留了该解的二维特征。假定FGM光束在厚度方向上是渐变的。沿厚度方向的材料特性遵循幂律形式的本构材料的体积分数。同时求解运动方程和常规耦合能量方程,以获得梁中的位移分量和温度分布。 Galerkin有限元方法使用C 1 -连续形状函数。拉普拉斯变换技术用于将控制方程式变换到空间域,在其中使用Galerkin有限元获得空间域的解。拉普拉斯变换的逆过程通过数字方式执行,以获得实时域中的最终解。最后,用文献中报道的已知数据验证结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号