首页> 外文期刊>Mechanical systems and signal processing >Robust detection of gearbox deterioration using compromised autoregressive modeling and Kolmogorov-Smirnov test statistic—Part Ⅰ: Compromised autoregressive modeling with the aid of hypothesis tests and simulation analysis
【24h】

Robust detection of gearbox deterioration using compromised autoregressive modeling and Kolmogorov-Smirnov test statistic—Part Ⅰ: Compromised autoregressive modeling with the aid of hypothesis tests and simulation analysis

机译:使用折衷的自回归模型和Kolmogorov-Smirnov检验统计量对齿轮箱的退化进行稳健的检测-第一部分:借助假设检验和仿真分析的受损自回归模型

获取原文
获取原文并翻译 | 示例

摘要

A novel technique for detection of gearbox deterioration is proposed in Part Ⅰ of this study. The proposed technique makes use of a time-varying autoregressive (AR) model and establishes a compromised AR model based on healthy gear motion residual (GMR) signals under varying load conditions and employs the Kolmogorov-Smirnov (K-S) goodness-of-fit (GOF) test statistic as a measure of gear condition. The order of the time-varying AR model is selected using a novel model order selection technique with the aid of hypothesis tests. The principal criterion for the selection of AR model order requires that the normality of the AR model residuals of the non-stationary healthy GMR signals under varying load conditions can be guaranteed. In the case where such orders are available, the one that results in the statistically least variance of the gear condition indicator, i.e. the K-S test statistic, is selected with the aid of the Bartlett's test. In the case where, under all considered orders, the normality condition cannot be met for all non-stationary healthy GMR signals, the order that results in the least violation against the normality condition can be identified with the aid of the Satterthwaite's t'-test. The coefficients of the time-varying AR model are estimated by means of a noise-adaptive Kalman filter. Validation of the proposed technique is carried out by using two sets of simulated entire lifetime gear vibration signals, i.e. clean and contaminated signals, to simulate the cases of sufficient and insufficient removal of background noise, respectively. The simulated tests demonstrate that the proposed technique possesses appealing effectiveness in identifying the optimum AR model order for robust gear condition detection under varying load conditions. The optimum performance of this technique is further confirmed by examining alternative orders.
机译:本研究的第一部分提出了一种检测齿轮箱劣化的新技术。所提出的技术利用时变自回归(AR)模型并基于在变化的负载条件下的健康齿轮运动残差(GMR)信号建立了受损的AR模型,并采用了Kolmogorov-Smirnov(KS)拟合优度( GOF)测试统计数据,以衡量齿轮状况。借助假设检验,使用新颖的模型顺序选择技术选择时变AR模型的顺序。选择AR模型顺序的主要标准要求,在变化的负载条件下,必须保证非平稳健康GMR信号的AR模型残差的正常性。在有这样的订单的情况下,借助于巴特利特检验选择导致齿轮状态指示器的统计差异最小的那一个,即K-S检验统计量。在所有考虑的顺序下,对于所有非平稳健康GMR信号均不能满足正常条件的情况下,可以借助Satterthwaite的t'检验确定导致对正常条件的违反程度最小的顺序。时变AR模型的系数是通过噪声自适应卡尔曼滤波器估算的。通过使用两组模拟的全寿命齿轮振动信号(即清洁和污染的信号)分别模拟充分和不足消除背景噪声的情况,对所提出的技术进行了验证。仿真测试表明,所提出的技术在确定可变负载条件下鲁棒齿轮状态检测的最佳AR模型顺序方面具有吸引人的有效性。通过检查替代订单,可以进一步确认该技术的最佳性能。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号