首页> 外文期刊>Mechanical systems and signal processing >ARMAX modal parameter identification in the presence of unmeasured excitation—Ⅰ: Theoretical background
【24h】

ARMAX modal parameter identification in the presence of unmeasured excitation—Ⅰ: Theoretical background

机译:不可测激励下的ARMAX模态参数识别——Ⅰ:理论背景

获取原文
获取原文并翻译 | 示例

摘要

This study investigates the performance of a time-domain parameter estimation algorithm aimed at identifying modal parameters from excitation and response data corrupted with significant measurement noise and unmeasured sources of periodic and random excitation. The parameters of an autoregressive moving average with exogenous excitation (ARMAX) model are estimated using an iterative multistage estimation algorithm. The use of backwards autoregressive with exogenous excitation (ARX) models in the multistage algorithm allows vibrational modes to be distinguished from spurious numerical poles and is also the basis of a model selection criterion. A diagonal parameterisation of the autoregressive (AR) polynomial matrices allows the MIMO ARMAX model to be separated into a number of MISO systems, and permits simple manipulation and stabilisation of the estimated model. Measurement noise and sources of unmeasured random and periodic excitations are accounted for by the ARMAX model structure. In this paper, the theory and algorithm of the ARMAX model is given.
机译:这项研究调查了一种时域参数估计算法的性能,该算法旨在从受重大测量噪声以及未经测量的周期性和随机激励源破坏的激励和响应数据中识别模态参数。使用迭代多级估计算法估计带有外在激励的自回归移动平均值(ARMAX)模型的参数。在多级算法中使用外生激励向后自回归(ARX)模型可以将振动模式与虚假数字极点区分开,并且也是模型选择标准的基础。自回归(AR)多项式矩阵的对角线参数化允许将MIMO ARMAX模型分离为多个MISO系统,并允许简单地操纵和稳定估计的模型。 ARMAX模型结构考虑了测量噪声以及未测量的随机和周期性激励源。本文给出了ARMAX模型的理论和算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号