首页> 外文期刊>Mechanical systems and signal processing >Rotating machinery fault diagnosis using signal-adapted lifting scheme
【24h】

Rotating machinery fault diagnosis using signal-adapted lifting scheme

机译:基于信号自适应提升方案的旋转机械故障诊断

获取原文
获取原文并翻译 | 示例

摘要

Wavelet transform has been widely used for vibration-based machine fault diagnosis. However, it is a difficult task to choose or design appropriate wavelet or wavelets for a given application. In this paper, a new signal-adapted lifting scheme for rotating machinery fault diagnosis is proposed, which allows us to construct a wavelet directly from the statistics of a given signal. The prediction operator based on genetic algorithms is designed to maximize the kurtosis of detail signal produced by the lifting scheme, and the update operator is designed to minimize a reconstruction error. The signal-adapted lifting scheme is applied to analyze bearing and gearbox vibration signals. The conventional diagnosis techniques and non-adaptive lifting scheme are also used to analyze the same signals for comparison. The results demonstrate that the signal-adapted lifting scheme is more effective in extracting inherent fault features from complex vibration signals.
机译:小波变换已被广泛用于基于振动的机器故障诊断。但是,为给定应用选择或设计适当的一个或多个小波是一项艰巨的任务。本文提出了一种新的信号自适应提升方案,用于旋转机械故障诊断,使我们能够直接根据给定信号的统计量构造小波。基于遗传算法的预测算子被设计为使提升方案产生的细节信号的峰度最大化,而更新算子被设计为使重构误差最小。信号自适应的提升方案用于分析轴承和齿轮箱的振动信号。常规诊断技术和非自适应提升方案也用于分析相同信号以进行比较。结果表明,信号自适应提升方案在从复杂振动信号中提取固有故障特征方面更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号