首页> 外文期刊>Mechanical systems and signal processing >Stochastic model updating-Covariance matrix adjustment from uncertain experimental modal data
【24h】

Stochastic model updating-Covariance matrix adjustment from uncertain experimental modal data

机译:不确定实验模态数据的随机模型更新-协方差矩阵调整

获取原文
获取原文并翻译 | 示例

摘要

With deterministic methods finite element model parameters are updated by using a single set of experimental data. As a consequence the corrected analytical model only reflects this single test case. However, test data are inherently exposed to uncertainty due to measurement errors, different modal extraction techniques, etc. Even a more relevant factor for variability originates from production tolerances and consequently the question arises, how to describe model parameters from the stochastic point of view? Therefore it would be desirable to use statistical properties of multiple sets of experimental and to consider the update parameters as random variables. This paper presents an inverse approach how to identify a stochastic finite element model from uncertain test data. In detail, this work demonstrates a method to adjust design parameter means and their related covariance matrix from multiple sets of experimental modal data. Results are shown from a numerical example.
机译:使用确定性方法,可以通过使用一组实验数据来更新有限元模型参数。结果,校正后的分析模型仅反映了该单个测试用例。但是,由于测量误差,不同的模态提取技术等因素,测试数据固有地处于不确定性之中。甚至更相关的可变性因素也来自生产公差,因此出现了问题,如何从随机的角度描述模型参数?因此,希望使用多组实验的统计特性并将更新参数视为随机变量。本文提出了一种从不确定的测试数据中识别随机有限元模型的逆方法。详细地,这项工作演示了一种从多组实验模态数据中调整设计参数均值及其相关协方差矩阵的方法。结果显示在一个数值示例中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号