首页> 外文期刊>Mechanical systems and signal processing >A novel design strategy for iterative learning and repetitive controllers of systems with a high modal density: Theoretical background
【24h】

A novel design strategy for iterative learning and repetitive controllers of systems with a high modal density: Theoretical background

机译:具有高模态密度的系统的迭代学习和重复控制器的新颖设计策略:理论背景

获取原文
获取原文并翻译 | 示例

摘要

This paper discusses the design and application of iterative learning control (ILC) and repetitive control (RC) for high modal density systems. Typical examples of these systems are structural and acoustical systems considered in active structural acoustic control (ASAC) and active noise control (ANC) applications. The application of traditional ILC and RC design techniques, which are based on a parametric system model, on systems with a high modal density has several important drawbacks: the design procedure is complex, the controllers require much computational power and the robustness of the controllers is low. This paper describes a novel strategy to design noncausal ILC and RC filters, which is especially suited for high modal density systems. Since it does not require a parametric system model, the novel strategy avoids several drawbacks of the traditional techniques: no cumbersome parametric model estimation is required; the ILC and RC controllers are robust to small changes of the poles and zeros of the controlled system; and the complexity of the ILC and RC control filters is restricted. A crucial element in the proposed strategy is the noncausal filtering in the ILC and RC controllers, which requires the availability of a trigger signal to announce a new ILC trial or RC period in advance. A numerical validation on a simulation model proves the potential of the developed strategy.
机译:本文讨论了用于高模态密度系统的迭代学习控制(ILC)和重复控制(RC)的设计和应用。这些系统的典型示例是在主动结构声学控制(ASAC)和主动噪声控制(ANC)应用中考虑的结构和声学系统。传统的基于参数化系统模型的ILC和RC设计技术在具有高模态密度的系统上的应用有几个重要的缺点:设计过程复杂,控制器需要大量的计算能力并且控制器的鲁棒性很强。低。本文介绍了一种设计非因果ILC和RC滤波器的新颖策略,该策略特别适用于高模态密度系统。由于不需要参数系统模型,因此该新颖策略避免了传统技术的几个缺点:不需要繁琐的参数模型估计; ILC和RC控制器对于受控系统的极点和零点的微小变化具有鲁棒性;并且限制了ILC和RC控制滤波器的复杂性。提出的策略中的关键要素是ILC和RC控制器中的非因果滤波,这需要触发信号的可用性才能提前宣布新的ILC试用或RC周期。仿真模型上的数值验证证明了开发策略的潜力。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2010年第2期|432-443|共12页
  • 作者单位

    Flanders' MECHATRONICS Technology Centre, Celestijnenlaan 300D, B-3001 Leuven, Belgium;

    Katholieke Universiteit Leuven, Department of Mechanical Engineering, Celestijnenlaan 300B, B-3001 Leuven, Belgium;

    Katholieke Universiteit Leuven, Department of Mechanical Engineering, Celestijnenlaan 300B, B-3001 Leuven, Belgium;

    Katholieke Universiteit Leuven, Department of Mechanical Engineering, Celestijnenlaan 300B, B-3001 Leuven, Belgium;

    Katholieke Universiteit Leuven, Department of Mechanical Engineering, Celestijnenlaan 300B, B-3001 Leuven, Belgium;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    iterative learning control; repetitive control; high number of degrees of freedom;

    机译:迭代学习控制;重复控制;自由度高;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号