首页> 外文期刊>Mechanical systems and signal processing >Ambient modal identification of a primary-secondary structure by Fast Bayesian FFT method
【24h】

Ambient modal identification of a primary-secondary structure by Fast Bayesian FFT method

机译:快速贝叶斯FFT方法识别主次结构的环境模态

获取原文
获取原文并翻译 | 示例

摘要

The Mong Man Wai Building is a seven-storied reinforced concrete structure situated on the campus of the City University of Hong Kong. On its roof a two-storied steel frame has been recently constructed to host a new wind tunnel laboratory. The roof frame and the main building form a primary-secondary structure. The dynamic characteristics of the resulting system are of interest from a structural dynamics point of view. This paper presents work on modal identification of the structure using ambient vibration measurement. An array of tri-axial acceleration data has been obtained using a number of setups to cover all locations of interest with a limited number of sensors. Modal identification is performed using a recently developed Fast Bayesian FFT method. In addition to the most probable modal properties, their posterior uncertainties can also be assessed using the method. The posterior uncertainty of mode shape is assessed by the expected value of the Modal Assurance Criteria (MAC) of the most probable mode shape with a random mode shape consistent with the posterior distribution. The mode shapes of the overall structural system are obtained by assembling those from individual setups using a recently developed least-square method. The identification results reveal a number of interesting features about the structural system and provide important information defining the baseline modal properties of the building. Practical interpretation of the statistics of modal parameters calculated from frequentist and Bayesian context is also discussed.
机译:旺民围大楼是一座七层的钢筋混凝土结构,位于香港城市大学的校园内。最近在其屋顶上建造了两层钢框架,用于容纳新的风洞实验室。车顶框架和主体建筑形成主次结构。从结构动力学的观点来看,所得系统的动力学特性是令人关注的。本文介绍了使用环境振动测量对结构进行模态识别的工作。已经使用多种设置获得了三轴加速度数据的阵列,以用有限数量的传感器覆盖所有感兴趣的位置。使用最近开发的快速贝叶斯FFT方法进行模态识别。除了最可能的模态特性外,还可以使用该方法评估其后不确定性。模态形状的后验不确定性通过最可能的模态形状的模态保证标准(MAC)的期望值进行评估,该模态保证标准具有与后验分布一致的随机模态形状。通过使用最近开发的最小二乘法从各个设置中组装结构形状,可以获得整个结构系统的形状。识别结果揭示了有关结构系统的许多有趣特征,并提供了定义建筑物的基线模态特性的重要信息。还讨论了根据常识和贝叶斯上下文计算的模态参数统计的实际解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号