首页> 外文期刊>Mechanical systems and signal processing >Neural network approach for a combined performance and mechanical health monitoring of a gas turbine engine
【24h】

Neural network approach for a combined performance and mechanical health monitoring of a gas turbine engine

机译:神经网络方法可对燃气轮机的性能和机械运行状况进行综合监控

获取原文
获取原文并翻译 | 示例

摘要

Traditionally independent diagnostics methods were employed for health monitoring of system. These exhibited an overall satisfactory performance, but with a limited effective ness range. A discipline that has emerged in recent years is that of an information (or data) fusion, which allows interweaving of different methods with different effectiveness ranges, to produce a wider and more reliable coverage of diagnosis. It is a multidisciplinary domain wherein, data from the various domain is blended together to arrive at a more reliable monitoring. The present paper brings out a Neural Network (NN) based approach for executing this task of combined health monitoring viz. mechanical and performance, with an example case study pertaining to a developmental power turbine. The various parameters used along with the trending methodologies both for steady state and transient operations are brought out. In addition, the influences of various parameters that can lead to deviations in the response are also discussed. The whole process of executing this task is put forward in a rather simple manner. The results accrued have been well corroborated with the findings on dismantling of the turbine.
机译:传统上,独立的诊断方法用于系统的健康监控。这些表现出总体令人满意的性能,但是有效强度范围有限。近年来出现的一门学科是信息(或数据)融合的学科,它允许不同有效范围的不同方法交织在一起,以产生更广泛,更可靠的诊断范围。它是一个多学科领域,其中来自各个领域的数据被混合在一起以实现更可靠的监控。本文提出了一种基于神经网络(NN)的方法来执行组合健康监控的任务,即。机械和性能方面的案例研究,涉及发展中的动力涡轮机。提出了用于稳态和瞬态运行的各种参数以及趋势方法。此外,还讨论了可能导致响应偏差的各种参数的影响。以相当简单的方式提出了执行此任务的整个过程。所获得的结果与涡轮机拆卸的发现得到了很好的证实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号