首页> 外文期刊>Mechanical systems and signal processing >Parameter identification of fluid line networks by frequency-domain maximum likelihood estimation
【24h】

Parameter identification of fluid line networks by frequency-domain maximum likelihood estimation

机译:基于频域最大似然估计的流体管路网络参数识别

获取原文
获取原文并翻译 | 示例

摘要

The accurate hydraulic simulation of fluid line networks is important for many applications, however, in many instances (such as surge analysis in water distribution networks) the system parameters are subject to much uncertainty. This paper presents a parameter identification method for fluid line networks based on transient-state measurements of the hydraulic variables of pressure and flow within the network. From a Laplace-domain admittance matrix representation of the system, a measurement model is derived that decouples the influence of unmeasured state variables from the measured state variables. This decoupled measurement model is used as the basis of the development of a frequency-domain maximum likelihood estimation method. The proposed method is applied to different case studies with successful results.
机译:流体管线网络的精确水力模拟对于许多应用都很重要,但是,在许多情况下(例如供水网络中的浪涌分析),系统参数会受到很大的不确定性。本文提出了一种基于瞬态测量网络中压力和流量的液压变量的流体管道网络参数识别方法。从系统的拉普拉斯域导纳矩阵表示中,得出测量模型,该模型将未测量的状态变量的影响与测量的状态变量解耦。这种解耦的测量模型被用作开发频域最大似然估计方法的基础。所提出的方法适用于不同的案例研究,并取得了成功的结果。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2013年第2期|370-387|共18页
  • 作者单位

    School of Civil, Environmental and Mining Engineering, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Australia;

    School of Electrical and Electronic Engineering, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide,Australia;

    School of Civil, Environmental and Mining Engineering, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Australia;

    School of Civil, Environmental and Mining Engineering, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fluid transients; Pipeline networks; Maximum likelihood estimation;

    机译:流体瞬变;管道网络;最大似然估计;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号