首页> 外文期刊>Mechanical systems and signal processing >An intelligent fault identification method of rolling bearings based on LSSVM optimized by improved PSO
【24h】

An intelligent fault identification method of rolling bearings based on LSSVM optimized by improved PSO

机译:改进PSO优化的基于LSSVM的滚动轴承智能故障识别方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an intelligent fault identification method of rolling bearings based on least squares support vector machine optimized by improved particle swarm optimization (IPSO-LSSVM). The method adopts a modified PSO algorithm to optimize the parameters of LSSVM, and then the optimized model could be established to identify the different fault patterns of rolling bearings. Firstly, original fault vibration signals are decomposed into some stationary intrinsic mode functions (IMFs) by empirical mode decomposition (EMD) method and the energy feature indexes extraction based on IMF energy entropy is analyzed in detail. Secondly, the extracted energy indexes serve as the fault feature vectors to be input to the IPSO-LSSVM classifier for identifying different fault patterns. Finally, a case study on rolling bearing fault identification demonstrates that the method can effectively enhance identification accuracy and convergence rate.
机译:提出了一种基于最小二乘支持向量机的滚动轴承智能故障识别方法,该算法通过改进的粒子群算法(IPSO-LSSVM)进行了优化。该方法采用改进的PSO算法对LSSVM参数进行优化,然后建立优化模型以识别滚动轴承的不同故障模式。首先,通过经验模态分解(EMD)方法将原始故障振动信号分解为一些平稳的固有模态函数(IMF),并详细分析了基于IMF能量熵的能量特征指标提取。其次,提取的能量指标用作故障特征向量,输入到IPSO-LSSVM分类器以识别不同的故障模式。最后,以滚动轴承故障识别为例,表明该方法可以有效提高识别精度和收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号